RESEARCH ARTICLE

PCR-Restriction Fragment Length Polymorphism and DNA Sequencing for Identification of Malassezia species Isolated from Animals in Egypt

Mohamed Taha1, Yasmine H. Tartor1*, Marwa I. Abd El-Hamid1, Manal M. El-Mesalamy2 and Abeer A. EL Sayed2

1Microbiology Department, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Sharkia Governorate, Egypt
2Mycology Department, Animal Health Research Institute (ARC), Zagazig branch, 12618, Zagazig, Sharkia Governorate, Egypt

Article History: Received: 15/10/2019 Received in revised form: 26/11/2019 Accepted: 04/12/2019

Abstract

Malassezia is one of the most significant yeast genera causing Malasseziosis in different animals. In the present study, the phenotypic methods, polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and DNA sequencing were applied for identification of Malassezia species isolated from 160 ear swabs and skin scrapings of apparently healthy and diseased dogs, cats, horses and buffaloes (40 animals, each). Of the 82 ear swabs as well as 78 skin scrapings, 24 (29.3%) and 25 (32.1%) yielded a positive growth on mycobiotic agar, respectively. The forty-nine Malassezia isolates were subjected for phenotypic identification based on macro- and micro-morphological characters on mycobiotic agar medium, growth on Dixon’s medium at different temperatures, and the physiological characters (tween assimilation, esculin hydrolysis, tryptophan utilization, and production of catalase enzyme). Polymerase chain reaction (PCR) amplification of 26S rDNA gene, followed by restriction analysis using HhaI restriction enzyme and DNA sequencing were employed. Forty-eight and one isolates were phenotypically identified as M. pachydermatis and M. globose, respectively. The PCR-RFLP assay for 21 representative isolates revealed the identification of M. pachydermatis (n=17), M. furfur (n=1), M. globosa (n=2) and M. restricta (n=1). Furthermore, the DNA sequencing showed a maximum identity (100%) of the tested isolates to Malassezia spp. available on the Genbank database. The most frequently identified Malassezia spp. by genotypic method was M. pachydermatis (80.95%). It was isolated from 33.3%, 23.8%, 14.28% and 9.52% of examined dogs, cats, horses and buffaloes, respectively. The second frequent identified species was M. globosa (9.52%). It was isolated only from horses and buffaloes (4.76% each), meanwhile M. furfur was recovered from buffaloes and M. restricta was isolated from dogs (4.76% each). In conclusion, PCR-RFLP assay and DNA sequencing proved to be more accurate and reliable methods for Malassezia spp. identification and are complementary for phenotypic methods.

Keywords: Malassezia species, PCR-RFLP, Phenotypic identification, 26S rDNA sequencing, Animals.

Introduction

Malassezia is one of the most significant basidiomycetous yeast genera, which is characterized by its lipid dependence [1]. Malassezia spp. are mostly established on the scalp, face, neck, top of the chest and back. It is one of the mycobionts of human skin that is rich in sebum production and its colonization increases after puberty, presumably due to the increased sebaceous gland activity [2-4]. Moreover, it presents as a microflora of most animals and sometimes acts as an opportunistic pathogen [5, 6].

Twelve Malassezia spp. including M. dermatis, M. furfur, M. globosa, M. japonica,
M. nana, M. obtusa, M. restricta, M. slooffiae, M. sympodialis, M. yamatoensis, M. caprae and M. equine have been recognized to be lipid dependents, whereas M. pachydermatis doesn’t require lipid supplementation for growth [7, 8].

The frequency of M. pachydermatis differs markedly between dogs with or without skin lesions, usually being larger on the affected skin compared with the healthy one [9, 10]. M. pachydermatis settles the stratum corneum of normal dogs with healthy skin in very low numbers [11]; while, dramatically increase of the number was found in the ear canals and allergic skin diseases in dogs [12]. Therefore, there is a great potential for human exposure to this organism. Most of the lipid dependent Malassezia spp. has been recovered from the healthy skin of cats [13-15], horses and different domestic ruminants, especially M. nana; from cats and cows [16].

Although the incidence of external otitis in horses is low, the presence of Malassezia spp. in the ear canal microbiome gives indication that these yeasts can cause infections when immune suppression occurs, or host has condition that favor excessive growth of Malassezia spp. [17].

Malassezia spp. can be identified on the basis of morphological and biochemical features [18]. While phenotypic methods are time consuming and can’t differentiate the newly identified spp., molecular methods are more rapid and accurate for the identification of Malassezia yeasts due to their simplicity, specificity and sensitivity [19, 20]. The recent molecular methods that were employed for differentiation of Malassezia spp. include single PCR restriction endonuclease analysis (REA) [21], PCR of 26S rDNA gene, followed by RFLP using the restriction enzymes HhaI [17, 22] and real-time PCR [23]. Analysis of 26S, ITS regions of rRNA gene, and chitin synthase gene sequencing and amplified fragment length polymorphism (AFLP) was used to identify M. caprae and M. equina from domestic animals [8]. Therefore, the purpose of this study was to evaluate both the phenotypic and genotypic methods for accurate identification of Malassezia spp. isolated from apparently healthy and diseased dogs, cats, horses and buffaloes.

Materials and Methods

Samples and examination procedures

A total of 160 samples (82 ear swabs and 78 skin scrapings) were obtained from apparently healthy (55) and diseased (105) animals. Samples were collected from dogs, cats, horses and buffaloes (40 each) attending private clinics and farms in Cairo and Sharkia Governorates, Egypt, during the period from September 2016 to December 2017. All the diseased animals were examined for recording the skin lesions of Malasseziosis (erythematous patches of alopecia and hair loss at the site of infection).

After cleaning the lesions by sterile gauze moistened with 70% ethanol, skin samples were obtained by scraping of the healthy skin or the lesion with sterile blades. Fine particles of skin scrapings were subjected for direct microscopic examination under the high power (40 x) objective lens of the light microscope (Binocular Biological Microscope, Xsz-2108, China) after treating with 20% potassium hydroxide. Ear swabs were collected by sterile cotton wool swabs moistened with sterile saline from the external auditory meatus of clinically suspected cases of otitis externa as well as from normal cases [24].

Fungal culture and phenotypic identification of Malassezia spp.

Fungal culture was carried out by inoculating the prepared samples onto mycobiotic agar media (CONDA, Spain, CAT: 1072); 4 slope agar tubes for each sample (2 with olive oil drops and 2 without oil). The tubes were incubated at 32°C for fourteen days and examined for growth every three days. The isolates have been identified using phenotypic methods; macro and microscopic features in addition to growth on Dixon’s medium at different temperatures; 32, 37 and 41°C [17]. The macro-morphological characteristics on mycobiotic agar medium as the isolates growth rates and colonies colors were recorded [18]. Moreover, microscopical examination of colonies by Gram’s stains were performed and the data were analyzed [1].
All the recovered isolates were subjected to catalase test. Moreover, tweens assimilation tests; 20, 40, 60, and 80 using well diffusion method was performed for detection of the physiological characters of Malassezia spp. [25]. Esculin splitting was also used to distinguish M. furfur, M. slooffiae and M. sympodialis from other Malassezia spp. [24]. Finally, tryptophan utilization test was used for identification of the brown pigments specific for M. furfur only [7].

Genotypic identification of Malassezia spp.

PCR-RFLP assay

Extraction of genomic DNA from representative Malassezia isolates was performed using QIAamp DNA Mini Kit (Sigma, USA, Catalogue no. 51304) according to manufacturer’s instructions. PCR targeting 26S rDNA gene was done using the oligonucleotide primers 5´- TAA CAA GGA TTC CCC TAG TA-3´ and 5´- ATT ACG CCA GCA TCC TAA G-3´ [22]. The amplification was carried out in Applied Biosystem thermal cycler, with a final volume of 25µL of the following reaction mixture: 12.5 µL Emerald Amp GT PCR mastermix (Takara, Code No. RR310A), 1 µL of each primer (20 pmol), 5 µL of template DNA, and 5.5 µL PCR grade water. The following cycling conditions were conducted: 94˚C for 5 min, followed by 35 cycles of 94˚C for 30 s, 56˚C for 40 s, and 72˚C for 45 sec, and a final extension at 72˚C for 10 min.

Furthermore, RFLP analysis was performed by incubating a 10 µL aliquot of each PCR product with 1 µL of HhaI restriction enzyme (Catalog number: FD1854 Thermo Fisher, Germany), 2 µl related buffer, and 17 µL nuclease-free water for 3h at 37 °C [26].

DNA Sequencing and phylogenetic analysis

PCR products of analyzed Malassezia spp. were purified using QIA quick Spin Columns (Qiagen Corp., Chatsworth, Calif.) and sequenced in the forward and reverse directions by Solgent Co. Ltd (South Korea). The obtained sequences were analyzed by DNA baser software (http://www.dnabaser.com/index.html). The sequences were compared against those published at GenBank using online Basic Local Alignment Search Tool (BLAST) (http://blast.ncbi.nlm.nih.gov/Blast.cgi). The genetic relatedness of the isolates was investigated via constructing a phylogenetic tree using neighbor joining method. This analysis was done using the MEGA software (V.5).

Statistical analysis

Statistical package for social science (SPSS ver. 20) was employed for data analysis using Chi_Square tests. Values were considered statistically significant at \(P \) value < 0.05.

Results

Small bottle shaped yeast cells of Malassezia spp. were observed in 32.05% (25/78) of skin scrapings from dogs, cats, horses and buffaloes by direct microscopy. Mycobiotic agar medium was utilized to determine the lipid dependent species. Out of 160 analyzed samples, 49 (25 skin scraping and 24 ear swabs) yielded positive growths onto mycobiotic agar medium (30.63%). On mycobiotic agar with olive oil, lipid dependent species suspected to be M. pachydermatis revealed raised, smooth and creamy colonies. On mycobiotic agar with olive oil, lipid dependent species showed creamy and rough colonies, whereas without olive oil, non-lipid dependent species suspected to be M. pachydermatis revealed raised, smooth and creamy colonies. The recovery rates of Malassezia spp. from the collected samples from all animal species are listed in Table1. Malassezia yeasts were detected in 49% of apparently healthy animals and 51% of diseased one.
Phenotypic identification of Malassezia isolates

Microscopical examination of the developed colonies onto mycobiotic slope agar revealed cylindrical to oval yeast cells with broad base buds (bottle-shaped appearance) and spherical yeast cells with narrow based buds.

Out of 49 positive Malassezia isolates, two different Malassezia spp. were identified; *M. pachydermatis* and *M. globosa* depending on their phenotypic criteria. *M. pachydermatis* was the most frequent isolated species with a percentage of 97.96% (48/49), while *M. globosa* was identified only in one isolate (2.04%). The isolates suspected to be *M. pachydermatis* revealed cylindrical to oval yeast cells with broad base buds under light microscope, grew at 31, 37 and 40°C on Dixon’s medium, assimilated all tweens and all were negative for both tryptophan utilization and esculin hydrolysis tests. The only *M. globosa* isolate yielded spherical yeast cell with narrow based buds under light microscope, failed to grow on Dixon’s medium at 40°C, gave positive results for catalase test, did not assimilate all tweens and was negative for both tryptophan utilization and esculin hydrolysis tests.

PCR-RFLP assay for Malassezia spp. identification

Twenty-one representative Malassezia isolates formally identified according to their phenotypic characters (20 were identified as *M. pachydermatis* and one *M. globosa*) were subjected to PCR-RFLP assay. PCR amplification of 26S rDNA gene from all tested Malassezia spp. revealed a single PCR product of the expected size at 580 bp. Digestion of the amplicons with *HhaI* restriction enzyme revealed four restriction patterns specific for *M. pachydermatis* (*n* = 17), *M. furfur* (*n* = 1), *M. globosa* (*n* = 2) and *M. restricta* (*n* = 1) as shown in Figure (1). Plainly, 17 out of 20 *M. pachydermatis*, were correctly identified, meanwhile three isolates were identified as *M. globosa*, *M. furfur* and *M. restricta*. Moreover, the isolate of *M. globosa* was successfully identified by PCR-RFLP assay.

Table 1: Total recovery rate of Malassezia spp. in ear swabs and skin scrapings from apparently healthy and diseased animals in Egypt

<table>
<thead>
<tr>
<th>Animals species</th>
<th>Ear swabs</th>
<th>Skin scrapings</th>
<th>Total number of isolates (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dogs</td>
<td>5/6 (83.3)</td>
<td>3/11 (27.2)</td>
<td>4/5 (80) (19/40 (47.5))</td>
</tr>
<tr>
<td>Cats</td>
<td>6/7 (85.7)</td>
<td>4/18 (22.2)</td>
<td>3/5 (60) (7/10 (35.0))</td>
</tr>
<tr>
<td>Horses</td>
<td>1/3 (33.3)</td>
<td>2/13 (15.3)</td>
<td>1/9 (11.1) (5/15 (33.3))</td>
</tr>
<tr>
<td>Buffaloes</td>
<td>2/9 (22.2)</td>
<td>1/15 (6.6)</td>
<td>2/11 (18.1) (1/5 (20))</td>
</tr>
<tr>
<td>Total (160)</td>
<td>14/25 (56)</td>
<td>10/57 (37.0)</td>
<td>10/30 (33.3) (15/48 (31.2))</td>
</tr>
</tbody>
</table>

| | | | |
| | 24/82 (29.26)| 25/78 (32.05)| 49/160 (30.62) |

* Forty animals from each animal species were examined.
DNA sequencing of the 26S rDNA regions of Malassezia spp.

The GenBank accession numbers of nucleotide sequences were MK351279 for *M. furfur* that was isolated from skin scrapings of diseased buffalo, MK351310 and MK351317 for *M. globosa*, from skin scrapings of diseased horse and apparently healthy buffalo, respectively. The accession number MK351319 was for *M. pachydermatis* from ear swab of apparently healthy cat and MK351315 for *M. restricta* from skin scrapings of diseased dog. The alignment of the nucleotide sequence of 26S rDNA gene of five representative *Malassezia* spp. with the published sequences in GenBank was presented in Figure (2). Concordance between PCR-RFLP and DNA sequencing was 100%. A Phylogenetic tree built from the obtained sequences showed different clusters for each species, indicating variation in their sequences. The identified sequences for all species were clustered with those previously deposited at GenBank for the same species (Figure 3).

Phenotypic methods identified only *M. pachydermatis* and *M. globosa*, while molecular method successfully identified *M. pachydermatis*, *M. globosa*, *M. restricta* and *M. furfur* (Table 2).
Figure 2: An alignment of the 26S rDNA region sequences of *M. furfur* (MK351279), *M. globosa* (MK351310 and MK351317), *M. pachydermatis* (MK351319), and *M. restricta* (MK351315) with published sequences in GenBank by online blast search. Numbers refer to the nucleotide positions and dots indicate nucleotide positions are identical to the corresponding sequence.
Figure 3: Phylogenetic tree based on 26S rDNA region sequences for *Malassezia* spp. obtained in this study with their reference strains in NCBI GenBank database. Bar indicates two base changes per 1000 nucleotide position.

Table 2: Correlation between phenotypic and genotypic identification of 21 representative *Malassezia* spp.

<table>
<thead>
<tr>
<th>Code no. of isolate</th>
<th>Host (sample)</th>
<th>Locality</th>
<th>Sharkia</th>
<th>Cairo</th>
<th>Malassezia spp. by phenotypic</th>
<th>Malassezia spp. by genotypic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Apparently Healthy</td>
<td>Diseased</td>
<td>Apparently Healthy</td>
<td>Diseased</td>
</tr>
<tr>
<td>D2</td>
<td>Dog (Ear swab)</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D3</td>
<td>Dog (Ear swab)</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D5</td>
<td>Dog (Skin scraping)</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D7</td>
<td>Dog (Skin scraping)</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D13</td>
<td>Dog (Skin scraping)</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D15</td>
<td>Dog (Skin scraping)</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D29</td>
<td>Dog (Ear swab)</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D31</td>
<td>Dog (Ear swab)</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C7</td>
<td>Cat (Ear swab)</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 1: Yeast isolation from different animals.

<table>
<thead>
<tr>
<th>Animal Type</th>
<th>Sample Type</th>
<th>Yeast Isolated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cat</td>
<td>Ear swab</td>
<td>M. restricta</td>
</tr>
<tr>
<td>Cat</td>
<td>Ear swab</td>
<td>M. globosa</td>
</tr>
<tr>
<td>Cat</td>
<td>Skin scraping</td>
<td>M. pachydermatis</td>
</tr>
<tr>
<td>Horse</td>
<td>Skin scraping</td>
<td>M. globosa</td>
</tr>
<tr>
<td>Horse</td>
<td>Skin scraping</td>
<td>M. restricta</td>
</tr>
<tr>
<td>Horse</td>
<td>Skin scraping</td>
<td>M. pachydermatis</td>
</tr>
<tr>
<td>Horse</td>
<td>Ear swab</td>
<td>M. globosa</td>
</tr>
<tr>
<td>Buffalo</td>
<td>Skin scraping</td>
<td>M. pachydermatis</td>
</tr>
<tr>
<td>Buffalo</td>
<td>Ear swab</td>
<td>M. globosa</td>
</tr>
<tr>
<td>Buffalo</td>
<td>Skin scraping</td>
<td>M. pachydermatis</td>
</tr>
<tr>
<td>Buffalo</td>
<td>Skin scraping</td>
<td>M. globosa</td>
</tr>
</tbody>
</table>

There are significant differences between phenotypic and PCR results (P value = 0.019). The relative sensitivity and accuracy of PCR-RFLP assay were 100% and 86% respectively (data not tabulated).

Discussion

Yeasts of the genus *Malassezia* are considered as both commensal and pathogens on the humans and animals’ skin. Rare cases of life threatening fungemia in people have been attributed to *M. pachydermatis*, for which dogs are a natural host. Zoonotic transfer has been documented from dogs to immunocompromised patients by healthcare workers who own dogs [27]. The present study inspected the phenotypic and genotypic methods for identification of *Malassezia* spp. isolated from dogs, cats, horses and buffaloes in Egypt. From 160 samples of skin scrapings and ear swabs collected from different animals, 49 isolates (30.63%) were identified as *Malassezia* spp. Macro-morphology of 49 isolates of *Malassezia* spp. on mycobiotic agar medium as well as the micro-morphology revealed characteristic features of *M. pachydermatis* and *M. globosa*, that agreed with previously published studies [28-30].

As presented in Table (1), *Malassezia* yeasts were detected in 49% of apparently healthy animals and 51% of diseased one. In support of our findings, Durate et al. [31] isolated *Malassezia* spp. at 40% from healthy animals and 64% from diseased one.

Malassezia spp. was isolated from dogs, cats, horses and buffaloes at percentages of 47.5%, 37.5%, 22.5% and 15% respectively. Lower percentages were declared by Zia and his co-workers in which *Malassezia* yeasts were detected in different animals at the following rates: 28.33%, 26.66%, 15.46% and 12.74% from dogs, cats, horses and cattle, respectively [32]. Nevertheless, Crespo et al. [13] and Rani et al. [33] reported the occurrence of *Malassezia* spp. from 60% of horses and 47.5% of buffalos, respectively.

In Egypt, the most frequently detected *Malassezia* spp. among human patient were firstly *M. furfur*, *M. globosa* and *M. restricta* [28, 34]. Nonetheless, these species were detected among animals by Crespo and his coworkers [35]. In the present study, one *M. furfur* isolate was obtained from affected skin scrapings of buffalo, two *M. globosa* were
identified from the affected skin of a horse and apparently healthy skin of a buffalo and one Malassezia restricta was recovered from skin scraping of a diseased dog.

Molecular methods have been established to furnish rapid and precise identification of Malassezia spp. as compared to phenotypic methods [21]. The PCR for 26S rDNA gene and RFLP analysis using HhaI enzyme have been used extensively for molecular analysis of Malassezia spp. [22, 31]. In this study, PCR for 26S rDNA gene showed identical bands for Malassezia genus at 580 bp. The restriction pattern of the isolates identified them at the species level of Malassezia globosa that showed 2 bands (129 and 455 bp), Malassezia pachydermatis showed 3 bands (97, 221 and 250 bp), Malassezia restricta showed one band (580 bp), and Malassezia furfur showed 3 bands (107, 113 and 250 bp), the obtained findings were in harmony with previous researches [22, 26]. In the case of Malassezia spp., Gupta et al., [36] observed that PCR-RFLP analysis of the internal transcribed spacer (ITS) region was sufficient to resolve the differences between the physiologically similar species Malassezia sympodialis, Malassezia furfur and Malassezia slooffiae. Further, sequence diversity within various species has been observed, which suggests the presence of several genotypes within the species [37]. ITS sequencing has likewise been demonstrated as valuable in discriminating the phylogenetically related Malassezia spp. [38]. The pairwise differences among sequences of the new genotypes from lipid-dependent Malassezia strains and the previously described genotypes ranged from 0.1 to 7.0% and 0.1 to 3.4% for ITS and beta-tubulin genes, respectively. These genetic analyses confirmed the identification of the lipid-dependent strains as Malassezia pachydermatis [39]. In this study, the phylogenetic tree was inferred from the sequences of closest strains in light of 26S rDNA gene sequences. The phylogenetic tree showed different clusters for each species indicating variation in their sequences. In essence, molecular methods are necessary for identification and differentiation of various Malassezia species, which can be difficult to characterize by phenotypic methods [40].

Conclusion

Although the phenotypic methods could identify some Malassezia spp., the PCR-RFLP assay using HhaI restriction enzyme and DNA sequencing are complementary and mandatory for Malassezia spp. identification from animals.

Conflict of interest

The authors have no conflict of interest to declare.

References

Mayser, P.; Haze, P.; Papavassilis, C.; Pickel, M.; Gruender, K. and Guého, E. 137

تفاعل البلمرة المتسلسل وتعدد أطوال جزء الحصر وتحليل التتابع الجيني لتصنيف انواع الملاسيزيا المعزلة من الحيوانات في مصر

محمد طه،1 محمد حسنين،1 مروه عبد الحليم،1 منال محمد المسمى،2 عبير أحمد السيد2

1 قسم الميكروبيولوجي - كلية الطب البيطري - جامعة الزقازيق 11551 - الزقازيق - محافظة الشرقية - مصر
2 قسم الميكولوجيا - معهد بحوث الصحة الحيوانية - الزقازيق 12618-محافظة الشرقية- مصر

الملاسيزيا هي واحدة من أهم الخمائر التي تسبب أمراً جلدياً في مختلف الحيوانات. وقد تم الكشف عن الفطر بكلاً من الطرق الظاهرة والجينية لعزلات الملاسيزيا من الكلاب، القطط، الخيول والجاموس السليمة وظاهراً والمريضة. تم جمع 160 عينة من مسحات الأذن وكشطات من الجلد من الحيوانات السليمة والحيوانات المصابة من بين 82 عينة من مسحات الأذن و78 عينة كشطات من الجلد، فقد اظهرت 24 (27.29%) و25 (32.05%) عينة لنمو البكتيريا على وسط الميكوبويتوكس على التوالي. تم فحص الخصائص الظاهرة والمجهرية الدقيقة لعدة 49 عزلة بعد اتمامها على وسط الميكوبويتوكس وكذلك وسط الديكسون عند درجات حرارة مختلفة وذلك تم تعريض بعض الخصائص الفسيولوجية والتي تشمل استهلاك التوين، تحليل الأوكسجين، استهلاك الأنزيم الكاتالاز. توضح استخدام الطرق الجينية (تفاعل البلمرة المتسلسل ونهاية القطع باستخدام إنزيم قطع Hha1) للتأكد من العزلات المعروفة مسبقاً على أنها ملاسيزيا. تم تصنيف العزلات الظاهرة لإتفاق الملاسيزيا جلوبوزا ومارسيزيا باكديريمنس بينما تم التعرف على ملاسيزيا ريسيرا كيما (1) ومارسيزيا فيفر (1) ومارسيزيا جلوبوزا (2) ومارسيزيا باكديريمنس (17) من واحد عشرة عزلة تمثلة بتفاعل البلمرة المتسلسل وتحديد أطوال جزء الحصر وعلاقة على ذلك فقد تم القيام بعمل تسلسل الحمض النووي الناتج وقد وجد نسبة تشابه 100% للمعالجات المختبرية مع تلك المتاحة في بسجت البديل وظهرت النتائج أن الأنواع الأكثر شيوعا واتباعها في ملاسيزيا باكديريمنس بنسبة 80.95%. وقد تم عزلها من 33.3%، 23.8%، 14.28%، 9.52% من الكالب، الفطط، الخيول والجاموس على التوالي، وتمت الملاسيزيا جلوبوزا ثاني أكثر الأنواع شيوعا بنسبة 9.52% وقد عزلت فقط بنسبة 4.76% من الكالب والجاموس بينما عزلت ملاسيزيا فيفر بنسبة 4.76% من الجاموس ومارسيزيا ريسيرا بنسبة 4.76% من الكلاب. مما سبب أن تفاعل البلمرة المتسلسل وتحديد أطوال جزء الحصر وتحليل التتابع الجيني أكثر دقة وموثوقية للتعرف على أنواع الملاسيزيا ومكملة للطرق الظاهرة.