Comparative Diagnostic Studies on Marek’s Disease in chickens by Use of Histopathology and Molecular Investigation

Abdel Moniem A Ali, El-Sayed RA El-Attar, Mohamed H Mohamed and Heba M Abdel Ghany
Pathology Dept, Faculty of Vet Medicine, Zagazig University, Egypt.

ABSTRACT

Hundred-twenty five diseased or freshly dead birds from different domestic poultry flocks chickens flocks layers breeds as (lohman, novagen and native breed as sasso) and sporadic cases were collected and necropsied between the period from Aug. 15, 2012 to Nov. 8, 2014 and samples from each case were collected. The collecting samples were subjected to the pathology and some selected ones (7) for PCR laboratory (stored freezing -20°C). Liver, spleen, heart, lungs, kidneys, intestine, ovary, proventriculus, gizzard, skin, nerve, bursa of Fabricius, eye and brain were the main examined organs.

Nervous disorders were observed with gasping, diarrhea and emaciation were also visualized besides up to 15% mortalities. Enlargement of sciatic nerves, irregular pupil, grayish-white nodules in the visceral organs and focal discolored areas on the skin were noticed besides ovarian congestion and misshaped ova. Microscopically, heavy pleomorphic cellular infiltrations of small lymphocytes, lymphoblasts, plasma cells and few mesenchymal cells proliferation and heterophil infiltration were seen in all examined organs. Extensive tissue necrosis, congestion, hemorrhage and edema were associated the infiltrations. Six-out of seven were PCR positive for Marek’s disease virus

All investigated birds were regarded as one disease with lesions possessing the same characteristics, but of varying severity (by histopathology). PCR was best tool to detect and confirm the Marek’s disease virus; but consuming time.

INTRODUCTION

Marek’s disease (MD) is a lymphoproliferative disease induced by the alpha-herpesvirus Marek’s disease virus (MDV) or Gallid herpesvirus 2 (GaHV-2). MDV has evolved towards more virulent forms in the recent decades. The efficacy of MDV vaccines has decreased concomitantly with the increase in virulence of field isolates. The disease was a major disease problem and source of great economic losses in poultry (1). The disease is characterized by the presence of T cell lymphoma as well as infiltration of nerves, skin, eye and visceral organs by lymphocytes (2).

MDV is an airborne pathogen with infection occurring via inhalation (3-5). Virus shedding occurs by infected feather follicle epithelium (6,7). The resulting dust and dander from dead stratified cells and moulted feathers can then remain in the environment and act as a reservoir for chicken infection. Clinical signs are varied and result in significant morbidity and mortality depending on host genetic susceptibility and virulence of the MDV strain (8). Symptoms include polyneuritis (an enlargement of multiple peripheral nerves), visceral lymphoma (tumors affecting organs such as the heart, liver, spleen etc.), acute transient paralysis, immunosuppression, brain edema and acute rash (9, 10). There has been a change in the types of clinical signs since the disease was first noted when chronic polyneuritis was the only sign. Since then, the
Diagnosis of Marek’s disease

Diagnosis of MD was performed on the basis of clinical signs, postmortem lesions, histopathology and PCR investigation.

Pathological examination

The necropsy was performed for detection of tumors in various tissues and visceral organs. Specimens were collected from such tissues collected and fixed in 10% buffered neutral formalin solution, dehydrated in gradual ethanol (70-100%), cleared in xylene, and embedded in paraffin. Five-micron thickness paraffin sections were prepared and then routinely stained with hematoxylin and eosin (HE) dyes (14) and then examined microscopically.

PCR technique

Extraction of DNA (15):

According to ABI©Pure Genomic DNA extraction kit instructions

200 µl of GB Buffer was added to 200 µl of the sample into the 1.5 ml microcentrifuge tube and mixed by vortex and then incubated at room temperature for 10 minutes or until the sample lysate is clear.

At this time, the required Elution Buffer was preheated in a 70° C water bath. 200 µl of absolute ethanol was added to the sample lysate and vortexed immediately for 10 seconds. GD Column was placed in a 2 ml Collection Tube and the mixture was transferred to the GD Column and then centrifuged at 14000 rpm for 3 minutes. The 2 ml Collection Tube containing the flow-through was discarded and the GD Column was placed in a new 2 ml Collection Tube. 400 µl of W1 Buffer was added to the GD Column and then centrifuged at 14000 rpm for 30 seconds. The flow-through was discarded and the GD Column was placed back in the 2 ml Collection Tube. 600 µl of Wash Buffer (ethanol added) was added to the GD Column and then centrifuge at 14000 rpm for 3 minutes. The flow-through was discarded and the GD Column was placed into a clean 1.5 ml microfuge tube. The dried GD Column was
transferred into a clean 1.5 ml microfuge tube and 100 µl of preheated Elution Buffer was added to the center of the column matrix. It was let stand for 3 minutes and then centrifugated at 14000 rpm for 30 seconds to elute the purified DNA.

Oligonucleotide primers used in cPCR

They have specific sequence and amplify a specific product as shown in Table (1).

Table 1. Oligonucleotide primers sequences

<table>
<thead>
<tr>
<th>Virus</th>
<th>Gene</th>
<th>Primer/ probe sequence 5’-3’</th>
<th>Amplified Segment (bp)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD</td>
<td>ICP4</td>
<td>MDV-1.1 GGATCGCCACC ACGATTACTACC MDV-1.8 ACTGCCTCACAC AACCTCATCTCC</td>
<td>247</td>
<td>16</td>
</tr>
<tr>
<td>REV</td>
<td>Env</td>
<td>REV-env-F ATG AAG ACG GGC CTA A REV-env-R AAA GGG GAG GCT AAG A</td>
<td>402</td>
<td>17</td>
</tr>
<tr>
<td>ALV-A</td>
<td>Env</td>
<td>H5-F GGATGAGGTGACTAAGAAAG EnV-A-R AGAGAAAAGAGGGYGTCTAAGGAGA</td>
<td>740</td>
<td>18</td>
</tr>
</tbody>
</table>

Table 2. Preparation of PCR Master Mix according to Emerald Amp GT PCR mastermix (Takara) Code No. RR310A kit

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume/reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emerald Amp GT PCR mastermix (2x premix)</td>
<td>12.5 µl</td>
</tr>
<tr>
<td>PCR grade water</td>
<td>4.5 µl</td>
</tr>
<tr>
<td>Forward primer (20 pmol)</td>
<td>1 µl</td>
</tr>
<tr>
<td>Reverse primer (20 pmol)</td>
<td>1 µl</td>
</tr>
<tr>
<td>Template DNA</td>
<td>6 µl</td>
</tr>
<tr>
<td>Total</td>
<td>25 µl</td>
</tr>
</tbody>
</table>

Cycling conditions of the primers during cPCR:

Temperature and time conditions of the different primers during PCR are shown in Table (3) according to specific authors and Emerald Amp GT PCR mastermix (Takara) kit.
Table 3. Cycling conditions of the different primers during cPCR

<table>
<thead>
<tr>
<th>Virus</th>
<th>Primary Denaturation</th>
<th>Secondary Denaturation</th>
<th>Annealing</th>
<th>Extension</th>
<th>Final Extension</th>
<th>No. of cycles</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD</td>
<td>95°C</td>
<td>94°C</td>
<td>58°C</td>
<td>72°C</td>
<td>72°C</td>
<td>35</td>
<td>(16)</td>
</tr>
<tr>
<td></td>
<td>10 min.</td>
<td>30 sec.</td>
<td>45 sec.</td>
<td>45 sec.</td>
<td>10 min.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REV</td>
<td>95°C</td>
<td>94°C</td>
<td>50°C</td>
<td>72°C</td>
<td>72°C</td>
<td>35</td>
<td>(19)</td>
</tr>
<tr>
<td></td>
<td>10 min.</td>
<td>15 sec.</td>
<td>45 sec.</td>
<td>45 sec.</td>
<td>10 min.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALV-A</td>
<td>95°C</td>
<td>94°C</td>
<td>55°C</td>
<td>72°C</td>
<td>72°C</td>
<td>35</td>
<td>(18)</td>
</tr>
<tr>
<td></td>
<td>15 min.</td>
<td>1 min.</td>
<td>1 min.</td>
<td>1 min.</td>
<td>10 min.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DNA Molecular weight marker:

The ladder was mixed gently by pipetting up and down. 6 μl of the required ladder were directly loaded.

Agarose gel electrophoreses with modification

Electrophoresis grade agarose (1.5 g) was prepared in 100 ml TBE buffer in a sterile flask, it was heated in microwave to dissolve all granules with agitation, and allowed to cool at 70°C, then 0.5μg/ml ethium bromide was added and mixed thoroughly. The warm agarose was poured directly in gel casting apparatus with desired comb in apposition and left at room temperature for polymerization.

The comb was then removed, and the electrophoresis tank filled with TBE buffer. Ten to fifteen μl of each PCR product samples, negative control and positive control were loaded to the gel. The power supply was 1-5 volts/cm of the tank length. The run was stopped after about 30 min and the gel was transferred to UV cabinet. The gel was photographed by a gel documentation system and the data was analyzed through computer software.

RESULTS

Incidence

Ninety-seven out of 125 (77.6%) examined tissues specimens were regarded as one disease entity with lesions possessing the same characteristics, but of varying severity. Such lesions were elucidated as Marek’s disease which confirmed by PCR results.

Clinical Signs

The consistent clinical signs observed were whitish-yellow diarrhea and ruffled feathers firstly observed. Nervous disorders of the neck, wings or legs and one leg stretched forward were observed. Gasping and emaciation were finally visualized besides up to 15% mortalities.
PCR Findings

Fig. 1. illustrates the PCR results which showed 6-out of 7 were positive.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>Pos</th>
<th>L</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>Neg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Per result: six liver samples were positive and one sample was negative of 7 sick chickens
L= marker pos= positive Neg= negative

Pathological Findings

Macroscopically, grayish-white or grayish-yellow nodules were seen scattered on the surface of most organs mainly liver, heart, spleen and kidneys (Fig 2 and 3). These organs were enlarged in sizes and friable in consistency. Enlargement and thickening of sciatic nerves (Fig 4), irregular pupil, and focal discolored areas on the skin were noticed besides ovarian congestion and misshaped ova had been observed. The brain of some cases showed severely congested meninges besides hemorrhagic patches.

Microscopically, the liver was focally or diffusely infiltrated with pleomorphic cellular aggregates of many small lymphocytes, lymphoblasts, plasma cells and few fibroblasts. These cells were firstly accumulated in the interlobar connective tissue especially around the small blood vessels (Fig 5). These foci were hyperplastic and spread by extension into the adjacent areas. They often fused together and form large masses of various sizes. These foci were rarely seen in the form of ill-defined nodular hyperplasia. Diffuse infiltration was partly seen in the hepatic parenchyma and perivascular sinusoids (Fig 6). Eosinophilic intranuclear inclusion bodies and numerous mitoses were visualized in some lymphoblasts (Fig 7 and 8). Extensive coagulative necroses were noticed in the contiguous zone of cellular infiltrations. Huge numbers of heterophils were detected in the portal areas and intermingled the hepatic and the neoplastic cells. Severe congestion of hepatoportal blood vessels, hemorrhages and perivascular edema were also encountered besides some degenerative changes of hydropic type were detected. The spleen showed marked infiltration of the large cells with vesicular nuclei (lymphoblasts) around the splenic arteries which gradually spread into necrotic splenic parenchyma (Fig 9). In the more severe cases, the splenic parenchyma was distorted and completely replaced by these cells. Some heterophils and reticular cells were noticed besides congestion of the remaining blood vessels. The heart revealed irregular sized areas of pleomorphic aggregates replacing the myocardium. The latter showed focal atrophy, degeneration and necrosis with heterophilic infiltrations. Focal aggregations of the neoplastic cells were observed in the loose connective tissue of the subepicardial area and
the fat tissue around the coronary arteries. Sometimes, the cell accumulations were seen diffusely or focally among the muscle fibers (Figs 10 and 11). The kidneys showed multiple aggregation of pleomorphic cells varying in the extent between the renal tubules. The latter were severe necrotic and represented by pyknosis, karyorrhexis and karyolysis (Fig 12). In some cases, the proliferation was so extreme and the renal parenchyma was completely replaced by aforementioned cells (Fig13). Lymphoid cell infiltration was seen in and around the lamina propria of the ureter in almost every case. The lungs showed focal pleomorphic cells aggregates of mature lymphocytes, plasma cells and a fewy lymphoblasts particularly in the connective tissue and around the blood vessels in the interlobular septa (Fig 14). In more severe cases, the pulmonary tissue was completely replaced by a forementioned cells except the parabronchi. Sometimes, the lymphoid proliferation was seen in the wall of the secondary bronchi, inducing catarhal bronchitis with perivascular aggregations of pleomorphic cells (Fig 15). Large areas of caseous necrosis were rarely seen in some cases. Pulmonary congestion, hemorrhage and edema were also visualized. The proventriculus showed invasion of the mucosa, muscularis mucosa, submucosa, lobules of the glands, muscular layers and subserosa by pleomorphic infiltration from lymphocyte, lymphoblast and heterophil cells (Fig 16). Extensive mucosal and glandular necroses with congestion of blood vessels were seen (Fig 17). The gizzard revealed pleomorphic cell aggregates around the small blood vessels in the submucosa, muscle layers and subserosa. Mucosal necrosis was also observed (Fig 18 and 19). The intestine showed replacement the all intestinal layers with pleomorphic aggregations with thickening of the intestinal wall (Figs 20 and 21). The bursa of Fabricius showed ill-defined lymphoid follicles with necrosis in the lymphoid cells at the center of the follicles. Sometimes, fibrous connective tissue proliferation was the cause of such demarcation. The tumor cells were seen in the interfollicular zones and rarely extended to the adjacent lymphoid follicles (Fig 22). The ovary showed focal replacement of the ovarian tissue with intense aggregates from pleomorphic cells replaced ovarian stroma. Such ova was degenerated or misshaped. Severe congestion and hemorrhage were seen around such infiltrations (Fig 23). The skeletal muscles showed perivascular tumor cell aggregations. Such aggregations were extended into the surrounding tissues. In severe cases, wide areas of muscle tissue were replaced by these cells. At the same time, hyaline degeneration and Zenker’s necrosis were noticed in the muscle fibers. Muscular atrophy was occasionally seen particularly with cases showed paralysis. The skin showed hypertrophied feather follicles with compact lymphoid aggregates in the dermis particularly around the dermal blood vessels (Figs 24, 25 and 26). These aggregates were rarely seen at the subepidermal zone inducing atrophy of the epidermal cells and ulcerations. The reticular and papillary layers of the dermis were focally hyalinized and necrotic. The hypodermis was focally infiltrated with these cells. The sciatic nerve was focally thickened and showed demyelination and few pleomorphic cellular infiltrations. Edema and hyalination of perineurium connective tissue were observed (Fig 27). The eye showed severe vacuolation and detached choroidal epithelium from the underlying sclera. Severe congestion and hemorrhage were noticed besides few round cells infiltrations. Sometimes, pale eosinophilic material between different layers was seen. The brain revealed vasogenic (in the ventricles and Virchow Robin spaces) and cytogenic (vacuolated neurons and neuronoglias) edema. Demyelination and encephalomalacia were visualized in the white matter (Fig 28). Numerous pleomorphic aggregations of T lymphocyte, plasma cells, heterophil cells the brain tissue (Fig 29). Such cells were focally replaced the brain tissue. Congestion and extensive hemorrhage were also reported besides degenerated neurons, satellitosis and neuronophagia.
Fig 2. Liver of (MD) showing grayish-white or grayish-yellow nodules of variable sizes on its surface.

Fig 3. Heart of (MD) showing large white elevated nodule.

Fig 4. Sciatic nerve of (MD) showing mild enlargement and thickening.

Fig 5. Liver showing multiple interstitial and perivascular pleomorphic aggregates of small lymphocytes, lymphoblasts, plasma cells and few fibroblasts (arrow), HE X100.
Fig. 6. Liver of (MD) showing diffuse replacement of hepatic parenchyma by pleomorphic aggregation of small lymphocytes, lymphoblast, plasma cells and few fibroblasts (arrow) mainly perivascular (arrow head), HEX100.

Fig. 7. Liver of (MD) showing large vesicular hyperchromatic nuclei with abundant esinophilic cytoplasm (arrow) and numerous mitotic figures (arrow head), HEX1000.

Fig. 8. Liver of (MD) showing eosinophilic intranuclear inclusion bodies (arrow) with large vesicular hyperchromatic nuclei (arrow head) and mitoses were visualized in some lymphoblasts (green arrow), HEX1000.

Fig. 9. Spleen of (MD) showing infiltration with large vesicular nuclei and abundant cytoplasm with lymphoid depletion (arrow), HEX50.
Fig. 10. Heart of (MD) showing focal or diffuse infiltration of myocardium by pleomorphic cell aggregates (arrow), HEX100.

Fig. 11. A higher magnification of figure (10) to show numerous pleomorphic cells (small, large lymphocytes, plasma cells and a few heterophils) infiltrating necrotic muscle fiber (arrow head), HEX400.

Fig. 12. Kidney of (MD) showing aggregation of pleomorphic cells between necrotic renal tubules represented by pyknosis, karyorrhexis and karyolysis (green arrow) with hemorrhage (arrow head), HEX400.

Fig. 13. Kidney of (MD) showing necrotic renal tubules (arrow head) with replacement renal parenchyma by mature lymphocytes, lymphoblasts, plasma cell and heterophil cells (arrow), HEX400.
Fig. 14. Lung of (MD) showing pleomorphic cells infiltrations particularly in the connective tissue septa (arrow) and around the blood vessels (arrow head), HEX50.

Fig. 15. Lung of (MD) showing perivascular mature lymphocytes, lymphoblasts and plasma cells aggregations proliferation (arrow), HEX400.

Fig. 16. Proventriculus of (MD) showing invasion of the mucosa, muscularis mucosa by pleomorphic infiltration of lymphocyte, lymphoblast and heterophil cells (arrow) with mucosal necrosis (arrow head), HEX100.

Fig. 17. Proventriculus of (MD) showing mucosal infiltration by intense aggregations from pleomorphic cells (arrow head) and glandular necroses (arrow) and congestion of sub mucosal blood vessels (green arrow), HEX100.
Fig. 18. Gizzard of (MD) showing pleomorphic cells infiltrations around the small blood vessels in the submucosa, muscle layers (arrow head) and mucosal necrosis (arrow), HEX100.

Fig. 19. Gizzard of (MD) showing subserosal massive infiltrations from pleomorphic cells (arrow), HEX400.

Fig. 20. Intestine of (MD) showing replacement of mucosal layer (arrow) and submucosa (arrow head) with pleomorphic cells aggregations of with thickening of the intestinal wall (green arrow), HEX100.

Fig. 21. A higher magnification of fig (20) showing pleomorphic cells with large vesicular hyperchromatic nuclei and abundant esinophilic cytoplasm with clusters formation (arrow), HEX1000.
Fig. 22. Bursa of Fabricius of (MD) showing inter follicular infiltration with pleomorphic cells aggregations (arrow head), HEX 50.

Fig. 23. Ovary of (MD) showing degenerated or misshaped ova (arrow head) with intense lymphoid cell infiltration (arrow), HEX 100.

Fig. 24. Skin of (MD) showing lymphoid cells aggregates in the dermis particularly around the dermal blood (arrow), HEX 400.

Fig. 25. A higher magnification of fig (24) showing perivascular aggregation of lymphoid cells around dermal blood vessel (arrow), HEX 400.
Fig.26. Oil magnification of fig (25) showing perivascular aggregation of pleomorphic cells with large oval vesicular hyper chromatic nuclei and scanty cytoplasm (arrow). HEX1000.

Fig.27. Sciatic nerve of (MD) showing few pleomorphic cellular infiltrations (arrow) with focal thickened and demyelination (arrow head). HEX400.

Fig.28. Brain of (MD) showing cytogenic edema represented by vacuolated neurons and neuronoglias (arrow head). HEX400.

Fig.29. Brain of (MD) showing perivascular pleomorphic aggregation of T lymphocyte, lymphoblast, macrophage, plasma cells and heterophil cells (arrow head). HEX400.
DISCUSSION

In the past, molecular techniques such as PCR were developed for the diagnosis of MDV by DNA extracted from feather tips, lymphocytes or tissue samples from the infected chickens with the advantage that it could be used for both detection and differentiation between virulent and vaccine MDV strains (20-22). PCR assays usually take several hours to complete including electrophoresis time making it time consuming diagnostic method, a technique that requires a well-established laboratory, a thermal cycler and a gel system to visualize respective amplified products. The most important aspect of the present study was to diagnose Marek’s disease by the gross and histopathological lesions (simple and a more rapid way) and confirm the diagnosis by PCR (23).

Ninety-seven out of 125 (77.6%) examined tissues specimens were diagnosed as Marek’s disease. The pathological changes of Marek’s disease have been reported by many authors, since the disease was first described by Marek in 1907.

Nervous disorders were the main clinical signs besides gasping, weakness, depression, in appetite, change in weight, diarrhea, immunosuppression, emaciation and increased percentage of mortality. These results are in agreement with (24-26).

Macroscopically, enlargement of sciatic nerves, irregular pupil, grayish-white nodules in the visceral organs and focal discolored areas on the skin were noticed. The aforementioned lesions were similar to those described by (26,27) and partially similar to (28) who described that the gross lesion of Marek’s in the classical form is enlargement of one or more of the peripheral nerves especially the brachial and sciatic plexus and nerve trunks, celiac plexus, abdominal vagus and intercostal nerves.

Microscopically, heavy pleomorphic cellular infiltrations of small lymphocytes, lymphoblasts, heterophils, plasma cells, fibroblasts and few mesenchymal cells were seen in all examined organs beside cellular mitosis. Extensive tissue necrosis, congestion, hemorrhage and edema were associated the infiltrations. A forementioned findings were in agreement with (29-32).

The bursa of Fabricius showed sharply demarcated lymphoid follicles with necrosis in the lymphoid cells at the center of the follicles. Sometimes, fibrous connective tissue proliferation was the cause of such demarcation. The tumor cells were seen in the interfollicular zones and rarely extended to the adjacent lymphoid follicles. Similar results were reported by (33, 34) and partially agreed with (31) who observed atrophied lymphoid follicles of bursa.

Necrosis in different cases is due to immunosuppression with inducing autoimmune disease where the T cell attacks the self cellular system. Similar finding were observed by (35).

All investigated birds were regarded as one disease entity with lesions possessing the same characteristics, but of varying severity (by histopathology). PCR was best tool to detect and differentiate the Marek’s disease virus; but consuming time.

It could be concluded that the prevalence of Marek’s disease was high in different poultry flocks and it diagnosed by histopathology and other molecular investigations such as PCR.

REFERENCES

Polymerase chain reaction for differentiation between pathogenic and non-pathogenic serotype 1 Marek's disease viruses (MDV) and vaccine viruses of MDV-serotypes 2 and 3 V. 40.

الملخص العربي

دراسات تشخيصية مقارنة على مرض ماريك في الدجاج باستخدام الفحص الحيوي والفحص الجزئي

عبد المنعم أحمد على، السيد نزال الخال، محمد مازم محمد، وهبة محمد عبد العزيز

قسم البيئولوجي - كليه الطب البيطرى - جامعة الزقازيق

هذه الدراسة تتضمن الضوء على أهم الأمراض السرطانية في الدجاج وآليتها مرض ماريك ومعرفته

مدى انتشار الفيروس بين قطعان الدجاج في المناطق المختلفة على أساس التفتيش الدقيق لجثث الدجاج في

مختلف المزارع واستخدام الفحص البيولوجي واختبار البكسي.

لقد تم جمع مانحة خمسة وثلاثون طائر من مختلف أربعة الطيور الداجنة وحالات متفرقة بين الفترة

من أغسطس 2012 إلى نوفمبر 2014. وقد تم تجميع عينات من الكبد والجهاز الهضم، والقلب والأوعية القلبية،

والرئتين والكلى والأمعاء والمبيض، الأحبه والجلد والأعصاب، والعين والدماغ من كل حالة وتعضوا

لحصول البيولوجي واختبار منها 7 حالات مختزنة عند 20 لفحش البكسي.裂

وكانت بعض الأعراض الظاهرة على هذه الطيور البكسيي في الراحي والنجح والصقلي و

صغير ونائي من النجاو، وشلل في الساقين أو الواجه في جانب واحد أو كلا الجانبين وتقسيم داخل

الإصابات واسع وحاول أن يصل إلى 10٪ وفيات.

أما الأعراض الظاهرة على هذه الطيور كانت زيادة في سمية الإصابة وازدادت في الأجهزة الحيوية وتفتيت في

العين. وقد لوحظت عقيدات عديدة في الأجهزة الحيوية وتفتيت في الأجهزة الحيوية وتفتيت في الأجهزة الحيوية.

احترق المبيض وشوه البيضات.

وقد كانت اساب الأعراض المجهزة فوجود أشكال متعددة من الخلايا المحفزة الصغرى والأخضر

لليمفاوية وخلايا البلاتيا وقليل من خلايا الليمفاوية المحتويت في معظم العينات المحمولة إلى جانب تنخر

واضع النطق في الأنسجة، واحتراق نزف وذمة. وكان حسب الحالات من أصل سبع تعترضوا اختبار بي

سي أر إيجابي لفيروس مرض ماريك.

وقد لوحظ أن جميع الطيور ظهر عليها نفس الأعراض ونفس الأعراض المجهزة ولكنها تختلف في

شعبيتها وكان البس أروأ أفضل وسيلة لاكتشاف وتمييز فيروس مرض ماريك. لكن تستغرق وقتا طويلا.