SHORT COMMUNICATION
Co-Infection of Fowl Adenoviruses and Newcastle Disease Virus in Broiler Chicken Farms in Sharkia Province

Alaa Abdallah1,2, Mohamed A. Lebdah2, Reham M. ElBakrey2*

1Veterinarian, Abu Hammad, Sharkia, 44661, Zagazig, Egypt
2Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, 44511 Zagazig, Egypt
*Corresponding author: E-mail address: rehamemara3@gmail.com

Abstract
Fowl adenovirus (FAdVs) infections have an important economic impact, especially in the production of broilers. It is considered the main cause of three syndromes: inclusion body hepatitis, hepatitis-hydropericardium syndrome, and gizzard erosions and ulcerations. This study was conducted on three broiler farms with total bird numbers ranging from 16,500 to 25,000 and ages 26-32 days in Sharkia province, Egypt. Chickens were vaccinated with commercially available Newcastle disease virus (NDV), infectious bronchitis virus (IBV), avian influenza virus (AIV), and infectious bursal disease virus (IBDV) vaccines. The birds showed clinical signs mainly depression, greenish diarrhea, and respiratory signs with mortalities. The pathological lesions were commonly hemorrhages on livers, papillae of proventriculus, and cecal tonsils, hydropericardium, gizzard erosion, and atrophied bursa of fabricius. Based on the molecular diagnosis using real-time machine and primers specific to FAdVs (conserved to all species A-E), and virulent NDV (vNDV), the three broiler flocks were positive for both viruses. The results of the examination and diagnosis of three broiler farms indicated the presence of FAdV infection, accompanying the infection with the most prevalent and circulating viral agent, NDV.

Keyboards: NDV, Fowl Adenoviruses, Broilers, Inclusion body hepatitis, Hydropericardium syndrome

Introduction
One of the challenges in the poultry industry is Newcastle Disease (ND), a highly contagious viral disease that infects several species of domestic, exotic, and wild birds [1]. ND has a significant global economic impact on poultry production due to the high cost of handling, which includes not only losses during an outbreak such as growth disorders, decreased productivity, and mortalities, but also expensive control measures like costly repeated testing and vaccination [2]. The virus that causes ND is an important pathogen known as Newcastle Disease Virus (NDV), avian paramyxovirus-1 (APMV-1) or avian orthoavulavirus-1 (AOav-1), belongs to the Paramyxoviridae family [3]. Lately, NDV sub-genotype VII belonging to class II is thought to be accountable for the concurrent outbreaks among chicken flocks in Egypt, despite using strict preventive immunization [4-7].

In addition to the outbreak of Newcastle disease in poultry farms in Egypt, another prominent viral disease affecting the poultry industry is the fowl adenovirus.

Fowl adenoviruses (FAdVs) belong to the family Adenoviridae and many diseases are associated with its infection
The most prevalent diseases produced by FAdVs infection are inclusion body hepatitis (IBH), hydropericardium syndrome (HPS), and gizzard erosions [9]. IBH is a severe disease that primarily affects young broilers from the ages of less than 2 weeks [10] which is caused by multiple serotypes of FAdV species D and E [11].

Hepatitis/hydropericardium syndrome (HHS) is a more recent significant pathological condition linked to FAdVs that has a significant economic impact on intensive chicken production [12]. In Egypt, Species D and E have mainly been isolated from the outbreaks of FAdVs [10,13-16].

Under field conditions, there is conflicting evidence about the role of FAdVs as the primary etiology. Certain publications indicate the FAdVs role as the primary agent [17]. On the other hand, other researchers consider FAdVs as a secondary pathogen, with disease emerging from co-infection with immunosuppressive agents, such as mycotoxins [18], chicken anemia virus [19], avian reovirus [20], and infectious bursa disease virus [21]. FAdVs may potentially have immunosuppressive effects due to reducing humoral and cell-mediated immunity, making affected birds more vulnerable to other infections [22, 23].

The present study investigated three broiler farms in Sharkia governorate, Egypt suspected to be co-infected with the Fowl adenoviruses and Newcastle disease virus, the clinical examination was carried out with the detection of the suspected viruses using real-time polymerase chain reaction.

Materials and Methods

Broiler Farms

Three farms of broiler chickens located in Sharkia Province, Egypt, were investigated after complaints from farm owners about the presence of mortalities among birds, which reached up to 320 birds per day with variable clinical signs. And they confirmed the absence of mycotoxins in the ration after laboratory examination. The descriptive data for three farms with the vaccination programs was illustrated in Table 1.

<table>
<thead>
<tr>
<th>No of farm</th>
<th>Total No. of birds</th>
<th>Age/ day</th>
<th>Vaccine program</th>
<th>Mortality rate*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farm 1</td>
<td>16,500</td>
<td>26</td>
<td>0d: Vaxxitek ND</td>
<td>100-280/day</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4d: IB (primer, 4/91)- Clone 30- Bivalent inactivated vaccine (H9+ND)</td>
<td>(750/ 4 days)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12d: Gumboro D78</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>17d: Avinew (ND)</td>
<td></td>
</tr>
<tr>
<td>Farm 2</td>
<td>20,000</td>
<td>32</td>
<td>0d: Vaxxitek IBD</td>
<td>40-65/day</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4d: IB (Ma5, 4/91)- Clone 30- Bivalent inactivated vaccine (H9+ND)</td>
<td>(152/ 3 days)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8d: inactivated vaccine (H9)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12d: Gumboro D78</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>17d: Avinew (ND)</td>
<td></td>
</tr>
<tr>
<td>Farm 3</td>
<td>25,000</td>
<td>30</td>
<td>0d: Vectormune (ND), Transmune (IBD)</td>
<td>150-320/day</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4d: IB (H120, 4/91)- Vitapest- inactivated vaccine (H9)</td>
<td>(920/ 4 days)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8d: Bivalent inactivated vaccine (H5+ND)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10d: live attenuated IBD vaccine</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20d: Avinew (ND)</td>
<td></td>
</tr>
</tbody>
</table>

* Number of dead birds was calculated since start of clinical disease until the investigation date
Examined Birds and tissue collection

Thirty broiler chickens were selected from the three farms (10 birds per farm) and submitted for clinical and postmortem examination. The tissues from organs such as the heart, liver, lung, and intestine were collected separately as pool samples for each organ for laboratory diagnosis using real-time Reverse transcription and polymerase chain reaction. In which the tissue collection was carried out according to the ethics of the Animal Care and Use Committee (IACUC), Faculty of Veterinary Medicine, Zagazig University, Egypt, under approval number: ZU-IACUC/2/F/283/2022.

Real-time polymerase chain reaction (PCR) for detection NDV

The RNA was extracted from the collected tissues (lung and intestine) using QIAamp MinElute Virus Spin kit (Qiagen GmbH, Hilden, Germany) in accordance with the manufacturer’s instructions. The rRT-PCR targeting of the fusion (F) gene of virulent NDV was performed using the WizPure™ qPCR Master (PROBE) kit (Wizbiosolutions Inc., Korea). The specific primers (F4839: 5'-TCCGGAGGATAACGCTCT-3', and F4939: 5'-AGCTGTTGCAACCCCAAG-3') and probe (F4894 (VFP-1): 5'-[FAM]AAGCGTTTCTGTCTCCTCTTCTCC[TAMRA]-3') were used for the detection of virulent strains of NDV (vNDV) as previously reported by Wise et al. [24], as well as cycling conditions used in this reaction were previously described by Abd Elfatah et al. [25].

Real-time polymerase chain reaction (PCR) for detection fowl adenoviruses

The DNA was extracted from the collected tissues (heart and liver) using Promega Wizard® Genomic DNA Purification Kit (Promega Corporation, USA) according to the manufacturer’s instructions. The real-time PCR was performed using the GoTaq® 1-Step RT-qPCR kit (Promega Corporation, USA). The specific primers targeting the conserved nucleotide sequences within the 52K gene (52K-F: TGT ACG AYT TCG TSC ARA C, and 52K-R: TAR ATG GCG CCY TGC TC) for detection all fowl adenovirus (FAdV) species (A-E), as well as the cycling conditions used in this reaction were previously described by Günes et al. [26].

Results

Clinical signs and pathology

All the investigated broiler farms were exhibited from depression, anorexia, reluctance to move, greenish diarrhea with respiratory signs. The necropsy of examined birds revealed hemorrhages on the tips of proventriculus and rectum, inflamed and hemorrhagic cecal tonsils, elliptical ulcers on payer’s patches of the intestine. Hydropericardium, enlarged liver with hemorrhagic spots, gizzard erosion, and hemorrhagic spots on duodenum were seen. As well as congested trachea, spleen, and kidneys with inflamed and atrophied bursa of fabricius were also observed. The pathological lesions of the examined birds from the three broiler flocks are shown in Figure 1 and Table 2.
et al., (2023)

Abdallah

December 2023

362

- 355

p

Zag Vet J, Volume 51, Number 4, 358

Figure 1. Pathological pictures of the three examined broiler flocks. A) and B) Hemorrhagic spots on papillae tips of proventriculus. C) Enlarged and hemorrhagic cecal tonsils. D) Hemorrhages on mucosa of rectum. E) and F) enlarged livers with hemorrhagic spots on the surfaces. G) Hydropericardium. H) Hydropericardium and enlarged liver with hemorrhagic spots.

Viruses Detection

Among the tested tissue samples that were collected from the birds of three broiler farms and submitted for detection of the NDV and FAdVs using real-time PCR/RT-PCR with specific primers. The results revealed that the three investigated farms were positive for virulent NDV and FAdVs (Table 2).

Table 2. Postmortem lesions and virus detection in the three investigated broiler farms

<table>
<thead>
<tr>
<th>No of farms</th>
<th>Haemorrhages</th>
<th>Detection of viruses using real-time machine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Papillae of proventriculus</td>
<td>Duodenum</td>
</tr>
<tr>
<td>Farm 1</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Farm 2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Farm 3</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Discussion

According to the World Organization of Animal Health, diseases caused by Fowl adenoviruses (FAdVs) are globally reported and considered of most apprehension, because of their economic and negative effects on commercial meat bird production and its trade [27]. FAdVs have recently drawn more interest from the worldwide poultry industry, with limited studies conducted in Egypt [10]. Currently, co-infection of FAdVs and other pathogens is very common, and pathological changes become typical in form. In this study, we investigated three broiler farms in Sharkia province, Egypt after farm owners complained of variable
mortalities and clinical signs among the birds. After visiting these farms, we recorded the visible clinical signs which included depression, anorexia, recumbence, and greenish diarrhea with respiratory signs. After a necropsy examination, we noticed more noticeable pathological lesions concerning the lesions of NDV as hemorrhages on the tips of the proventriculus, inflamed and hemorrhagic cecal tonsils, and elliptical ulcers on payer’s patches of the intestine as previously mentioned by Ewies et al. [5]. Furthermore, the lesions of the enlarged liver with hemorrhagic spots, hydropericardium, and gizzard erosion are commonly notifiable in case of infection with FAdV [9, 28].

The molecular diagnosis confirmed the identification and detection of the velogenic strain of NDV and FAdV in the investigated broiler farms, although these farms were vaccinated against NDV. Maletić et al. [29] confirmed that the FAdV has an immunosuppressive effect, consequently reducing the protective efficacy of some vaccines whereas Newcastle’s vaccines come primarily. FAdVs not only affect humoral immunity but also cell-mediated immunity [30], this leads to the emergence of a more pathogenic virus increasing mortality and causing severe clinical findings [30, 31]. In which the atrophied bursa of fabricius was reported in this investigation.

A wide range of ages can be infected with different FAdV serotypes, from less than two weeks old [10] to 20 weeks [11]. The early-age infections may be attributed to the vertical transmission of the virus from the parent flock [32]. Also, horizontal transmission is occurring for broilers. The virus infection and transmission are commonly combined with a failed biosecurity management system and environmental contamination. Where, FAdV unveils high resistance to most disinfectants and detergents, allowing the virus to persist in the poultry house for long periods, easily transmitting [33].

Finally, the result revealed that FAdVs were detected among poultry populations, especially broilers in Egypt, with NDV co-infection despite the application of the NDV vaccination programs. This requires more attention to increase the awareness of veterinarians and farmers about this infection with FAdV because the virus can be the primary pathogen in broilers which increases the possibility of outbreaks of diseases associated with other pathogens and leads to large economic losses. So the interest in breeder health standards and serotype-specific immunity, the adoption of biosecurity for the broiler flocks, as well as providing a scientific basis for comprehensive prevention and control of FAdV infection may result in reduced transmission. Consequently, the poultry flocks can be protected from the FAdV effect, reducing the possibility of co-infection and maintaining the protective efficiency of vaccines.

Conflict of Interest

No potential conflict of interest was reported by the author(s).

References

