

Zagazig Veterinary Journal, ©Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt. Volume 51, Number 3, p239-262 September 2023 DOI: 10.21608/zvjz.2023.236422.1218

RESEARCH ARTICLE

Epidemiological Occurrence of the Infectious Bursal Disease Virus in Chicken Flocks Receiving Various Vaccination Regimens

Running Title: Occurrence of Infectious Bursal Disease Virus

Naglaa F. S. Awad*, Heba H. M. Morsi, Ahmed M. Al-baqir, and Amal A. M. Eid*

Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia 44511, Egypt

Correspondence authors: Amal A. M. Eid, Email:amalaeidvet@gmail.com and Naglaa F. S. Awad, Email: NF2731982@gmail.com

Abstract

Infectious bursal disease (IBD) is an acute immunosuppressive disease of chickens that, despite various vaccination strategies, continues to cause significant economic losses in the poultry industry. The current study sought to determine the prevalence of IBDV infection in relation to various vaccination programs and other risk factors in three different Egyptian Governorates. As a result, 69 chicken flocks were studied clinically and molecularly, with 62 flocks (case flocks) suspected of being naturally infected with the infectious bursal disease virus (IBDV) and 7 flocks (control flocks) apparently healthy. The investigated diseased flocks had whitish diarrhea, depression, ruffled feathers, bursal lesions, nephrosis, nephritis, hemorrhages on muscles, and petechial hemorrhages at the junction of the proventriculus and gizzard. The mortality rate ranged from 0.31 to 25%. Using real-time reverse transcriptase-polymerase chain reaction (RT-PCR), IBDV was detected in 47 of 62 (75.8%) of the tested flocks, while no IBDV was found in the control flocks. The highest prevalence rates were found in chickens aged 18–20 days old and of the Sasso, Indian River, and Hubbard breeds. The detection rate was 100% in chicken flocks vaccinated with Intermediate vaccine (Nobilis Gumboro D78), Intermediate+ Intermediate plus, Vaxxitek-ND-IBD, and Innovax-ND-IBD. Remarkably, the most effective vaccine program was in flocks that used the Vaxxitek-ND –IBD+ Intermediate vaccine (33.3%). It could be concluded that single-dose IBDV vaccines provide insufficient protection against IBDV strains, particularly live ones, due to maternal antibody interference. Meanwhile, vaccination with a recombinant vaccine followed by one or two booster doses of live vaccines provides good protection and prevents IBDV infection. Therefore, it is necessary to utilize the outcome of the field application best trials to update and improve the IBDV immunization programs with keeping in mind the biosecurity practices in chicken farms as well as the complete gene sequencing to detect mutations and virus evolution.

Keywords:

IBD, Epidemiology, Recombinant Vaccines, Real time RT-PCR, Chickens.

Introduction

Infectious bursal disease (IBD) is an acute, highly contagious and immunosuppressive disease of young chickens aged 3–6 weeks [1]. It is

characterized by damage lymphoid tissues. particularly bursa of Fabricius, where В lymphocytes mature and differentiate. It continues to be a major constraint for poultry owners worldwide.

It results in huge economic losses to the poultry industry throughout the world despite extensive vaccination. The socioeconomic impacts of IBD are mainly due to i) Direct losses associated with high mortality rates; ii) Indirect losses from immunosuppression, decreased productivity as well control as and prevention expenses The [2]. consequences of immunosuppression are vaccination failure and increased susceptibility of chickens to other pathogens. Furthermore, the infected birds may be good propagators for other viral agents [3].

Chickens, among other domestic poultry, are natural hosts for IBD. The fecal-oral route is the most common route of transmission of the IBDV, after that the aerosol method [4]. IBD can affect both commercial and backyard chickens in an equal way [5]. Additionally, numerous risk factors including location, age, sex, health status, source, and housing system are related to the development of IBD in chickens [6, 7].

Being a member of the family Avibirnavirus, Birnaviridae and genus infectious bursal disease virus (IBDV), is a bi-segmented, double stranded RNA virus, highly resistant in the environment [8]. The RNA encodes for five viral proteins (VP1 to VP5). with VP2 containing most neutralizing sites hypervariable regions that allow strains to be classified into multiple antigenic and genetic categories. The IBDV strains are classified as very virulent, virulent, and subclinical depending on the pathogenic type. On the basis of sequencing analysis of the VP2 variable region, the IBDV has been molecularly described. Antigenicity, recognition, immunogenicity, tissue tropism, and pathogenicity of IBDV strains may all be affected by amino acid changes [9, 10].

Since the first discovery of classical IBDV strains in Delaware in 1962 [11], the virus has spread all over the world, while evolving rapidly. Two serotypes (I and II) of IBDV were recognized, but only serotype I causes natural disease in chickens [12]. Through genomic reassortment and recombination events, serotype I variant strains, isolated during the 1980s [13], are able to resist vaccineinduced protection. Furthermore, IBDV live vaccines are designed maintain the quasispecies nature of the encourage virus. which may the development of more virulent antigenic variants or mutants [14].

In Egypt, EL-Sergany et al. diagnosed the IBD for the first time based on its specific pathological lesions [15]. IBDV outbreaks continue infect broiler to chickens, resulting in severe economic losses despite mandated vaccination against the disease. Variant and vvIBDV strains have been identified [16-20].

Live vaccines are categorized as mild, intermediated, intermediate plus, and hot IBD vaccines based on the degree of attenuation [21]. Mild and intermediate vaccines are safer compared with the intermediate plus and hot vaccines because they induce less bursal injury; but are easily neutralized by high levels of maternally derived antibodies (MDA). Next-generation vaccines, which have the advantage of overcoming MDA, been developed result ofas a technological advancements. They now commercially available in the market such as the IBD vector vaccine which uses turkey herpes virus (HVT) as a vector for the IBDV VP2 gene [22], and the Immune-complex vaccine that is a mixture of the intermediate plus strain with antibodies, which is picked up by macrophages until MDA are no longer present [23]. effective As a result,

vaccines should be used to combat IBDV infections. However, frequent viral mutations, reassortment, and recombination events that can increase virulence of the virus and change its antigenicity might have negative impacts on the vaccination regimes. Moreover, the interference with maternally derived immunity reduces the efficacy of vaccines 25]. Furthermore, due emergence of very virulent strains IBDV, some conventional vaccines have been reported less effective [26].

Although acute IBD is still reported with a significant adverse impact on the industry in Egypt, poultry vaccinated chicken flocks, shortage of researches the on IBD epidemiological occurrence of in vaccinated chickens in Egypt. Considering the existing vital situation, we directed the current study to determine the epidemiological occurrence of IBD in both case and control vaccinated chicken farms from three different governorates in Egypt and using different vaccination programs.

Materials and methods

Ethics Declaration

The study was approved by Institutional Animal Care and Use Committee of Zagazig University with

approval number ZU-IACUC/2/F/73/2021 and was carried out in agreement with the approved guidelines.

Birds and field investigations

The current study was conducted on 69 Egyptian chicken flocks from three governorates: Sharkia, Port Said, Ismailia, during the period from February 2020 to November 2022. These examined flocks were allocated into two groups; i) apparently healthy chickens with no observable clinical signs (control flocks; n = 7) and ii) suspected to be naturally infected with IBDV, presenting postmortem clinical and findings signifying IBDV infection (case flocks; n = 62). The flocks' histories comprising total number of birds, age, breed, season, system, previous vaccination. rearing clinical sings, mortality rates. and postmortem lesions of freshly dead birds Descriptive were recorded. data about investigated these chicken flocks was illustrated **Tables** and 2.All investigated case and control flocks were under the umbrella of various IBDV vaccination regimens. Three birds / flock collected and submitted laboratory of Avian and Rabbit Medicine Department, **Faculty** of Veterinary Medicine, Zagazig University for IBD virus detection.

Table 1. Descriptive data and infectious bursal disease (IBD) vaccine regimens history of the investigated chicken Case-flocks during 2020-2022.

		Electr		A ~~	Vaccination				Rearing
Flock No.	Year	Flock density	Breed	Age (days)	Type of vaccine	Age (days)	Locality	Season	system
1	2022	50000	Ross	20	Nobilis Gumboro D78	9	Port said	Winter	Closed
2	2022	48000	Ross	21	Nobilis Gumboro D78	12	Port said	Winter	Closed
3	2022	49000	Ross	31	Nobilis Gumboro D78	11	Port said	Spring	Closed
4	2022	49000	Arbor Acres	29	Nobilis Gumboro D78	11	Port said	Summer	Closed
5	2022	51000	Arbor Acres	25	Nobilis Gumboro D78	11	port said	Autumn	Closed
6	2022	76000	Arbor Acres	21	Vaxxitek-IBD	1	Sharkia	Winter	Closed
7	2022	76000	Arbor Acres	21	Vaxxitek-ND-IBD	1	Sharkia	Spring	Closed
8	2022	75000	Arbor Acres	29	Vaxxitek-IBD Nobilis Gumboro D78	1 11	Sharkia	Summer	Closed
9	2022	75000	Arbor Acres	29	Vaxxitek-ND-IBD Nobilis Gumboro D78	1 11	Sharkia	Summer	Closed
10	2022	74000	Arbor Acres	27	Vaxxitek-ND-IBD Nobilis Gumboro D78	1 11	Sharkia	Autumn	Closed
11	2022	71000	Arbor Acres	29	Innovax-ND-IBD UNIVAX-BD	1 10	Sharkia	Autumn	Closed
12	2022	35000	Balady	24	Vaxxitek-IBD	1	Sharkia	Winter	Opened
13	2022	36000	Balady	24	Vaxxitek-IBD	1	Sharkia	Spring	Opened
14	2022	61000	Indian River	21	Innovax-ND-IBD Nobilis Gumboro D78	1 11	Sharkia	Winter	Closed
15	2022	60000	Indian River	21	Innovax-ND-IBD Nobilis Gumboro D78	1 11	Sharkia	Spring	Closed
16	2022	59000	Ross	29	Transmune IBD complex Bursine-2	1 11	Sharkia	Spring	Closed
17	2022	61000	Ross	29	Transmune IBD complex Bursine-2	1 11	Sharkia	Summer	Closed
18	2022	60000	Ross	27	Transmune IBD complex Bursine-2	1 11	Sharkia	Autumn	Closed
19	2022	111000	Balady	24	Innovax-ND-IBD	1	Ismailia	Winter	Closed

					Bursien-2 Bursine-2	12 22			
20	2022	25000	Balady	22	Innovax-ND-IBD	1	– Sharkia	Winter	Opened
21	2022	33000	Balady	24	Innovax-ND-IBD	1	– Sharkia	Spring	Opened
22	2022	30000	Balady	28	Vaxxitek-ND-IBD Nobilis Gumboro D78	1 12	- Sharkia	Summer	Opened
23	2022	166000	Cobb	19	Innovax-ND-IBD	1	Port said	Winter	Closed
24	2022	160000	Ross	23	Innovax-ND-IBD AviPro IBD Xtreme	1 12	Port said	Spring	Closed
25	2022	160000	Ross	35	Innovax-ND-IBD AviPro IBD Xtreme	1 12	Port said	Spring	Closed
26	2022	150000	Cobb	19	Vaxxitek-ND-IBD	1	- Ismailia	Winter	Closed
27	2022	150000	Ross	23	Vaxxitek-ND-IBD AviPro IBD Xtreme	1 12	- Ismailia	Spring	Closed
28	2022	150000	Ross	35	Vaxxitek-ND-IBD AviPro IBD Xtreme	1 12	- Ismailia	Spring	Closed
29	2022	22000	Ross	23	BURSIMUNE IBD BLEN (2512)	10 14	- Sharkia	Winter	Opened
30	2022	23000	Ross	19	BURSIMUNE IBD BLEN (2512)	9 13	Sharkia	Spring	Opened
31	2022	20000	Ross	27	Nobilis Gumboro D78 Bursine- plus	11 15	Sharkia	Spring	Opened
32	2022	23000	Ross	33	Vaxxitek-IBD Nobilis Gumboro D78	1 11	Sharkia	Summer	Opened
33	2022	22000	Cobb	35	Vaxxitek-IBD Nobilis Gumboro D78	1 11	Sharkia	Autumn	Opened
34	2022	28000	Balady	24	Vaxxitek-IBD	1	– Sharkia	Winter	Opened
35	2022	25000	Balady	26	Transmune IBD complex Bursine-2	1 11	– Sharkia	Spring	Opened
36	2022	25000	Balady	26	Vaxxitek-ND-IBD Bursine-2	1 12	- Sharkia	Summer	Closed
37	2020	55	Balady	60	NA	-	– Sharkia	Autumn	Opened
38	2020	500	Cobb	29	NA	-	Sharkia	Winter	Opened
39	2020	51	Balady	50	NA	-	Sharkia	Spring	Opened

40	2020	40	Balady	45	NA	-	Sharkia	Spring	Opened
41	2020	90	Balady	75	NA	-	Sharkia	Summer	Opened
42	2020	25	Balady	60	NA	-	Sharkia	Winter	Opened
43	2020	80	Balady	60	NA	-	Sharkia	Autumn	Opened
44	2020	40	Balady	90	NA	-	Sharkia	Autumn	Opened
45	2020	40	Sasso	40	NA	_	Sharkia	Winter	Opened
46	2020	700	Ross	30	CEVAC IBDL	14	Sharkia	Winter	Opened
47	2020	64	Cobb	20	NA	-	Sharkia	Winter	Opened
48	2020	20	Sasso	40	NA	_	Sharkia	Spring	Opened
49	2020	50	Balady	30	NA	-	Sharkia	Spring	Opened
50	2020	10000	Balady	36	Vaxxitek-IBD Intermediate vaccine	1 10	Sharkia	Spring	Closed
51	2020	50	Balady	30	NA	-	Sharkia	Spring	Opened
52	2021	10000	Balady	36	Vaxxitek-IBD Intermediate	1 10	Sharkia	Winter	Closed
53	2021	50	Balady	30	NA	_	- Sharkia	Winter	Opened
54	2021	50	Cobb	21	NA	_	Sharkia	Winter	Opened
55	2021	6000	Balady	27	CEVAC IBDL	13	Sharkia	Winter	Opened
56	2021	12000	Cobb	30	Vaxxitek-IBD	1	Sharkia	Summer	Closed
57	2021	4000	Ross	28	Nobilis Gumboro D78	11	_ Sharkia	Spring	Opened
				-	Nobilis Gumboro 228E	14	_		
58	2021	5500	Balady	18	AviPro IBD Xtreme	12	Sharkia	Summer	Opened
59	2021	60000	Indian River	33	Innovax-ND-IBD	1	Sharkia	Summer	Closed
				•	Nobilis Gumboro D78	10	_		
60	2021	11000	Balady	40	Vaxxitek-IBD	1	Sharkia	Summer	Closed
					Nobilis Gumboro D78	10	_		
61	2021	3200	Hubbard	25	CEVAC IBDL	10	Sharkia	Spring	Opened
U1	2021	3200	Hubbaru	43	CEVAC IBDL	14	Silaikia -	Spring	Opened
62	2022	4000	Ross	26	CEVAC IBDL	12	Sharkia	Winter	Opened

NA: not available; Nobilis Gumboro D78, Bursine2 &-plus, BURSIMUNE and UNIVAX-BD are intermediate; Vaxxitek-IBD, Vaxxitek-ND-IBD, Innovax ND-IBD and are recombinant, AviPro IBD Xtrem, CEVAC IBDL and IBD BLEN (2512) are intermediate plus and Transmune IBD complex is immunocomplex vaccines.

Table 2: Descriptive data and infectious bursal disease (IBD) vaccine regimens history of the investigated chicken control-flocks during 2022.

		Flock		Age	Vaccination				
Flock No.	Year	density	Breed	(day)	Type of vaccine	Age (days)	Locality	Season	Rearing system
1	2022	30000	Balady	28	Vaxxitek-IBD Bursine-2	1 12	Sharkia	Summer	Opened
2	2022	111000	Balady	28	Vaxxitek-ND-IBD AviPro IBD Xtreme AviPro IBD Xtreme	1 11 20	Ismailia	Spring	Closed
3	2022	111000	Balady	28	Vaxxitek-IBD Bursine-2 Bursine-2	1 12 17	Ismailia	Summer	Closed
4	2022	160000	Ross	28	Vaxxitek-ND-IBD Bursine-2	1 12	Port said	Summer	Closed
5	2022	158000	Ross	28	Innovax-ND-IBD Bursine-2	1 12	Port said	Autumn	Closed
6	2022	150000	Ross	28	Vaxxitek-ND-IBD Bursine-2	1 12	Ismailia	Summer	Closed
7	2022	147000	Ross	28	Vaxxitek-ND-IBD Bursine-2	1 12	Ismailia	Autumn	Closed

Nobilis Gumboro D78, Bursine-2, BURSIMUNE and UNIVAX-BD are intermediate, Vaxxitek-IBD, Innovax-ND-IBD and Vaxxitek-ND-IBD are recombinant, AviPro IBD Xtrem, CEVAC IBDL and IBD BLEN (2512) are intermediate plus and Transmune IBD complex is immunocomplex vaccines.

Sample collection

Sixty-nine pooled bursae of Fabricius samples (3 bursae / flock/ pool) were collected from 69 vaccinated chicken flocks. located in three Egyptian governorates, under complete aseptic conditions and kept at -20°C till be used in IBDV detection using real-time reverse transcription polymerase chain reaction (real-time RT-PCR).

RNA extraction

The viral RNAs were extracted from 69 pooled bursal homogenates, one part of each pooled bursa sample mixing in saline representing (1:1),vaccinated chicken case flocks and 7 vaccinated chicken control flocks using **OIAamp** Viral RNA Mini Kit (Qiagen, Valencia, CA) according to the manufacturer's instructions.

Real time RT-PCR

The extracted RNA was exposed to one-step real time RT-PCR by using QuantiTect Probe RT-PCR Kit (Qiagen) for detection of IBDV using the probe and primer pair targeting the VP2 gene of IBDV. A reference IBDV strain and noninfected bursa were used as positive and controls, respectively. negative The IBDV/SHEM-8/2015 with accession MK493463 was used as a positive control and was obtained from Dr. Tamer A. El-Aried, Reference Laboratory for Quality control on Poultry Production, Sharkia Branch, Zagazig, Egypt. The probe and primers sequences were: IBDV probe: 5'-(FAM)

TCCCCTGAAGATTGCAGGAGCATTT G-(TAMRA)-3'; IBDV forward primer: 5'-GAGGTGGCCGACCTCAACT-3'and IBDV reverse primer: 5'-

AGCCCGGATTATGTCTTTGAAG-3'

[27]. The thermal cycling conditions were 45°C for 10 min and 95°C for 10 min, followed by 45 cycles of 95°C for 15 sec, 57°C for 30 sec and 72°C for 30 sec.

Statistical Analysis

GraphPad Prism version 8 for Windows, GraphPad Software, La Jolla, California, USA, www.graphpad.com, was used to determine the effect of numerous risk factors on the prevalence of IBD in vaccinated chicken flocks. The results with P < 0.01 were considered as statistically significant.

Results

Clinical and postmortem findings

In apparently healthy chicken flocks (control flocks), no noticeable clinical signs or postmortem lesions of clinical disease were observed. Meanwhile, flocks suspected to be naturally infected with IBDV (case flocks) showed clinical signs in the form of whitish diarrhea (29/62; 46.8%) (Figures 1A B), ruffled and depression 19.4%) feathers, (12/62;(Figure 1C) and decrease in growth rate (19/62;30.6%). Moreover, greenish diarrhea (7/62; 11.3%), congested head (8/62; 13%) and respiratory signs (25/62; 40.3%) were observed. The mortality rates of the examined flocks ranged from 0.31 - 25%(Table 3). The mortality percentages of the investigated chickens vaccinated with different IBDV vaccines were demonstrated in Table Interestingly, the lower mortality rates were recorded in chicken flocks vaccinated with Transmune IBD complex + Intermediate (1.16 %), Vaxxitek-IBD + Intermediate (1.52%)Intermediate and plus (1.97%).

Table 3. Clinical signs, postmortem lesions and mortality rates of chickens from infectious bursal disease virus (IBDV) positive flocks during 2020 to 2022

	2022		C	linical signs	3			PM lesions						
Flock No.	Mortality rate (%)	Respiratory signs	Congested head	Diarrhea	Depression/ ruffled feather	Decrease growth rate	Bursal lesions	Hemorrhages on muscles	Hemorrhages at junction between proventriculus and gizzard	Kidney lesions	Caseated plug in tracheal bifurcation	Fibrinous pericarditis perihepatitis air sacculitis		
1	4.66 (21d to 28d) 5.11	+	-	-	-	+	Enlarged	-	-	Nephrosis	+	+		
2	(21d to 28d) 5.06	+	-	-	-	+	Enlarged	-	-	Nephritis	+	+		
3	(28d to 37d) 1.42	-	-	Greenish	-	+	Enlarged	-	-	Nephrosis	-	-		
4	(28d to 35d) 1.33	-	-	-	-	-	Enlarged	-	-	Nephritis	-	-		
5	(21d to 28d) 4.26	+	-	-	-	+	Enlarged	-	-	Nephritis	-	+		
6	(21d to 28d) 3.23	-	+	-	-	+	Atrophy	-	-	Nephrosis	+	+		
7	(21d to 28d) 2.99	+	-	Greenish	-	+	Atrophy	-	+	Nephritis	-	+		
8	(27d to 35d) 0.39	+	-	-	-	-	Enlarged	-	-	Nephritis	-	+		
9	(21d to 28d) 5.09	-	-	-	+	-	Atrophy	-	-	-	-	-		
10	3.09 (21d to 28d)	+	+	-	-	+	Atrophy	-	-	Nephrosis	+	+		

11	3.105 (21d to 28d)	+	+	Whitish greenish	-	+	Enlarged	Thigh	-	Nephrosis	+	-
12	1.34 (28d to 35d)	+	-	Whitish	-	-	Enlarged	-	-	Nephritis	-	+
13	0.72 (21d to 28d) 1.052	-	-	-	+	-	Enlarged	-	-	-	-	-
14	(21d to 28d) 0.93	-	-	-	+	-	Enlarged	-	-	-	-	-
15	(21d to 28d) 14.72	-	-	-	+	-	Enlarged	-	-	Nephritis	-	-
16	(19d to 28d) 14.18	+	-	-	-	+	Enlarged	-	-	Nephrosis	+	+
17	(21d to 28d) 5.31	+	+	Greenish	-	+	Atrophy	-	-	Nephrosis	+	+
18	(33 d to 39d) 13.77%	+	+	Whitish	-	+	Atrophy	-	-	Nephrosis	-	-
19	(19d to 28d) 21.6	+	-	-	-	+	Enlarged	-	-	Nephrosis	+	+
20	(21d to 29d) 7.46	+	+	Greenish	-	+	Atrophy	-	-	Nephrosis	+	+
21	(21d to 28d) 6.38	+	-	-	-	+	Atrophy	-	-	Nephrosis	+	+
22	(19d to 28d)	+	+	Greenish	-	+	Atrophy	-	-	_	-	+
23	4.61 (27 to 35 d)	+	-	Greenish	-	-	Enlarged	-	-	Nephritis	-	+
24	2.1 (28 to 35 d)	-	-	-	-	_	Enlarged	-	-	Nephritis	-	-

25	4.14 (21d to 28d)	-	-	-	+	-	Enlarged	Thigh	-	Nephrosis	-	-
26	2.97 (21d to 28d)	+	-	-	-	-	Enlarged	Thigh	-	Nephrosis	-	+
27	18.18	+	-	Whitish	-	-	Enlarged	-	+	-	-	+
28	3.92	-	-	Whitish	-	-	Enlarged	Thigh	-	Nephrosis	-	-
29	10	+	-	Whitish	-	-	Enlarged	-	+	Nephrosis	-	+
30	12.22	+	-	Whitish	-	-	Enlarged	Thigh and breast	-	Nephrosis	-	+
31	20	+	+	Whitish	-	-	Enlarged	-	-	Nephrosis	-	+
32	17.5	_	-	Whitish	+	-	Enlarged	Thigh	+	Nephrosis	-	-
33	25	_	_	Whitish	+	_	Enlarged	Thigh	+	Nephrosis	_	_
34	6.25	_	_	Whitish	_	_	Enlarged	-	_	Nephrosis	_	_
35	=	-	_	Whitish	-	-	Enlarged	Thigh	+	Nephrosis	-	-
36	-	-	-	Whitish	-	-	Enlarged	Thigh	-	Nephrosis	_	-
37	0	-	-	Whitish	-	-	Enlarged	Thigh and breast	+	Nephrosis	-	-
38	6	+	-	Whitish	-	-	Enlarged	Thigh and breast	-	Nephrosis	-	+
39	18	+	-	-	+	+	-	Thigh	+	Nephrosis	-	+
40	1.65	_	_	Whitish	_	_	Enlarged	-	_	Nephrosis	_	_
41	0.53	_	-	Whitish	-	+	Enlarged	-	_	Nephrosis	-	-
42	2.025	_	_	Whitish	-	-	Enlarged	-	_	Nephrosis	-	-
43	1.38	_	-	Whitish	+	-	Enlarged	-	_	Nephrosis	-	-
44	0.31	-	-	Whitish	-	-	Enlarged	-	-	Nephrosis	-	-
45	0.95	-	-	Whitish	-	+	Enlarged	-	-	Nephrosis	-	-
46	2.06	+	-	Whitish	-	-	Enlarged	-	-	Nephrosis	-	+
47	3.55	+	-	Whitish	-	-	Enlarged and hemorrhagic	Thigh	-	Nephrosis/ nephritis	-	+

⁺ mean present, - mean absent, PM: postmortem

Table 4: Mortality percentages of investigated chickens vaccinated with different infectious bursal disease virus vaccines

Type of vaccine	No. of examined birds	No. of dead birds	Mortality %
Intermediate (Nobilis Gumboro D78)	247000	8645	3.5
Intermediate plus	19400	383	1.97
Intermediate + Intermediate plus	69000	4227	6.13
Vaxxitek-IBD	187000	5130	2.74
Vaxxitek-IBD + Intermediate	151000	2293	1.52
Vaxxitek-ND-IBD	226000	23116	10.23
Vaxxitek-ND-IBD + Intermediate	504000	42970	8.53
Innovax-ND-IBD	224000	24433	11
Innovax-ND-IBD + Intermediate	683000	38261	5.6
Transmune IBD complex + Intermediate	205000	2385	1.16

Postmortem lesions of the naturally infected IBD flocks were noticed in bursae (Figures 1D-F) in the form of enlarged (49/62;79%), enlarged with petechial hemorrhage mucosa in the gelatinous (1/62;%) or exudates 1.6 atrophied (1/62;1.6%) and (12/62;19.4%) some investigated chickens. in nephritis (40/62;64.5%), **Nephrosis** (16/62; 25.8%) and nephrosis & nephritis (1/62; 1.6%) with extension of ureters with urates were recorded in the examined chickens (Figures 1**G** and H). thigh Additionally, hemorrhages on the (Figure 1I) and pectoral muscles were noticed 21%) (13/62;and petechial hemorrhages at the junction between the gizzard (8/62; proventriculus and 13%) were observed. Nevertheless, some investigated birds showed respiratory manifestations, the gross examination fibrinous pericarditis, exposed septicemia, perihepatitis airsacculitis (24/62;and 38.7%) and caseated plugs in tracheal bifurcation (10/62;16.1%). Moreover, just one studied flock (Flock no. showed hemorrhages on the cecal tonsils, and two flocks (Flocks no. 11 and 32) showed friable livers.

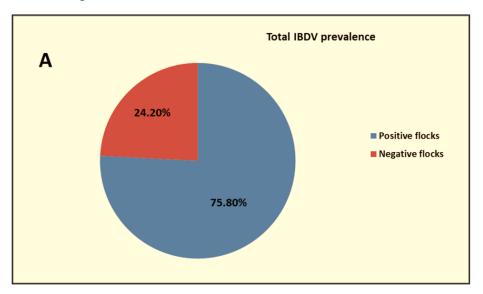


Figure 1. Clinical and postmortem findings of chickens suspected to be affected by IBDV. (A) Whitish diarrhea soiled vent feathers. (B) Profuse white yellowish watery diarrhea. (C) Depression and ruffled feathers. (D) Closed enlarged bursa. (E) Closed bursa filled with gelatinous exudate. (F) Opened hemorrhagic bursa. (G) Kidney showing nephritis. (H) Kidney showing nephrosis. (I) Hemorrhages on thigh muscle.

Prevalence of IBDV in the investigated chicken flocks

All bursal samples collected from apparently healthy chickens were negative for IBDV using real-time RT-PCR. Meanwhile, in IBD-suspected flocks,

IBDV was detected in the collected bursae of Fabricius from three governorates in Egypt with an overall prevalence of 47/62; 75.8% but none of the apparently healthy flocks revealed IBDV (0/7) (Figure 2A and Table 3).

В

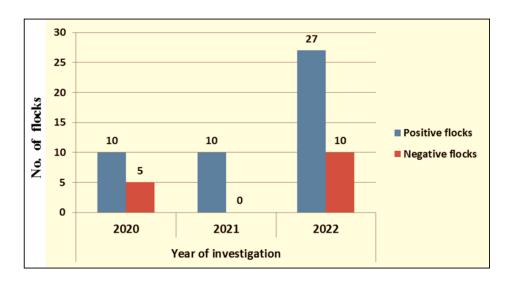


Figure 2. The occurrence of IBDV among IBD-suspected chicken flocks in three governorates in Egypt. (A): Total IBDV prevalence. (B): Detection of IBDV in the chicken flocks during the studied period of investigation.

The occurrence rate of IBDV in the chickens documented examined was according to several potential risk factors; flock density, breed, age, season, locality, rearing system, years of investigation, and type of vaccines. The molecular detection of IBDV in the chicken flocks during the studied period of investigation presented that the IBD prevalence was higher during 2021(10/10; 100%) as compared to 2022 and 2020 (27/37;72.9% and 10/15; 66.6%) (Figure 2B). The IBDV detection was significantly (P < 0.01) higher among chicken farms with flock density more than 100000 chickens (85.7%).In addition, the infection rates were higher in chickens aged 18-20 days (100%) and >35 days (91.7%). The chicken Sasso, Indian River and Hubbard were the most affected breeds (100%) as compared to (76.5%),Balady (75%),Ross (71.4%) and Arbor Acres (62.5%) ones. The prevalence of IBD was significantly (P< 0.01) higher among chickens in Port Said (100%) as compared to Ismailia (75%) and Sharkia governorates (72%) (Table 5).

Table 5. Risk factors associated with prevalence of infectious bursal disease (IBD) in the surveyed chicken flocks during 2020-2022

Risk factor	No. of examined flocks	No. of positive flocks (%)	Mean Diff.	95% CI of diff.	P value
Flock density	_	•			
≤ 5000	19	14 (73.7)	-4.5	-10.96 - 1.959	0.1238
$>5000 - \le 50000$	23	19 (82.6)	RF	-	-
>50000 -< 100000	13	8 (61.5)	10.5	4.041-16.96	0.013^{*}
>100000	7	6 (85.7)	14.5	8.041- 20.96	0.0051^{**}
Breed					
Ross	17	13 (76.5)	-6	-12.90 - 0.8979	0.0884
Arbor Acres	8	5 (62.5)	-14.5	-21.407.602	0.0012^{**}
Balady	24	18 (75)	RF	-	-
Indian River	3	3 (100)	18	11.10- 24.90	0.0004^{***}
Cobb	7	5(71.4)	15	8.102 -21.90	0.001^{**}
Sasso	2	2(100)	19	12.10 - 25.90	0.0003***
Hubbard	1	1(100)	20	13.10 - 26.90	0.0002^{***}
Age(d)		, ,			
18-20	6	6 (100)	RF	-	-
21-28	26	22 (84.6)	-18	-33.362.645	0.0326^{*}
28-35	18	8 (44.4)	-7	-22.36 - 8.355	0.3002
>35	12	11 (91.7)	-5.5	-20.86 - 9.855	0.4422
Locality					
Sharkia	50	(72)36	RF	-	-
Ismailia	4	3 (75)	39.5	6.967 -72.03	0.0345^{*}
Port said	8	8 (100)	35	2.467 -67.53	0.0435^{*}
Season					
Summer	12	7 (58.3)	RF	-	_
Spring	21	17 (81)	-9.5	-13.79 to -5.206	0.0053**
Autumn	8	4(50)	3.5	-0.7937 - 7.794	0.0846
Winter	21	19 (90.5)	-10.5	-14.79 to -6.206	0.004^{**}
Rearing system		• •			
Opened	33	25 (75.8)	RF	-	-
Closed	29	22 (75.9)	3.5	-9.065 to 16.06	0.1725

RF = reference factor, P< 0.01 was considered as statistically significant

the occurrence of IBD Also. significantly (P < 0.01) higher among chickens during winter and spring seasons with the percentages of 90.5% and 81%, respectively. According to rearing system there was no significant difference (P >0.01) in the incidence of IBD between opened (75.8%)and closed (75.9%)(Table 5). Regarding systems different IBD vaccination programs, the prevalence

of IBD was 100% in poultry flocks that used Intermediate vaccine (Nobilis Gumboro Intermediate+ D78) only, Intermediate plus, Vaxxitek-ND-IBD and Innovax-ND-IBD. But flocks received Vaxxitek-ND-IBD Intermediate vaccines revealed (33.3%),Transmune **IBD** complex + Intermediate vaccine (50%), and Vaxxitek-IBD +Intermediate vaccine (66.7%) (Table 6).

Table 6. Prevalence of infectious bursal disease virus (IBDV) infection among chicken flocks with different vaccination regimens

Risk factor	No. of examined flocks	No. of positive flocks (%)	Mean Diff.	95% CI of diff.	P value
Type of vaccine					
Intermediate (Nobilis Gumboro D78)	5	5 (100)	3	-0.6917 to 6.692	0.1381
Intermediate plus	5	4 (80)	2.5	-1.192 - 6.192	0.2787
Intermediate+ Intermediate plus	4	4 (100)	2	-1.692 - 5.692	0.5145
Vaxxitek-IBD	5	4 (80)	2.5	-1.192 - 6.192	0.2787
Vaxxitek-IBD +Intermediate	6	4 (66.7)	3	-0.6917 - 6.692	0.1381
Vaxxitek-ND-IBD	2	2(100)	RF	-	-
Vaxxitek-ND-IBD + Intermediate	6	2 (33.3)	-2	-5.692 - 1.692	0.5145
Innovax-ND-IBD	3	3 (100)	-1	-4.692 - 2.692	0.9724
Innovax-ND-IBD + Intermediate	7	6 (85.7)	-4.5	-8.1920.8083	0.0156^{*}
Transmune IBD complex + Intermediate	4	2 (50)	-1	-4.692 - 2.692	0.9724
NA	15	11(73.3)	-	-	-
Total	62	47	-	-	-

RF = reference factor; P< 0.01 was considered as statistically significant; NA: not available.

Discussion

Infectious bursal disease is the most important contagious immunosuppressive disease of poultry [28] and increasing the susceptibility to many infectious agents that are non-pathogenic in healthy The control **IBDV** chickens [3]. of infection depends mainly on vaccination, but recently, IBDV field strains partially fled form vaccines due to mutation and recombination reassortment or increase viral pathogenicity and virulence [24, 25]. In Egypt, IBD outbreaks have still occurred even in vaccinated chicken flocks leading to serious economic losses to the poultry industry [17, 18, 29, 30]. Therefore, the aim of the current study investigate molecularly was to prevalence of IBDV in chicken farms vaccination using different programs allocated in three different provinces in Egypt during the period from 2020 to 2022.

Clinically, the diagnosis of **IBD** depends on the observation of symptoms and postmortem examination of the bursa of Fabricius [16, 31]. In the current study, investigated chickens exhibited the clinical signs comprising depression, ruffled feathers and whitish diarrhea and mortality 0.31 - 25%rate. The gross lesions were enlarged, hemorrhagic, and atrophied bursa. bursa filled with gelatinous exudate, hemorrhages on the thigh and pectoral muscle, and petechial hemorrhages at the junction between the proventriculus and gizzard. Swelling of the kidneys and ureters extended with urates were observed. The also aforementioned clinical picture was previously presented to be accompanied with IBDV infection by several authors [32-35].

We clarified that the concurrent infections with other viruses and bacteria

virus (NDV), IBV, (Newcastle disease and Escherichiacoli) might play a role in clinical complicating the picture IBDV-infected birds. Such coexisting infections were manifested in the present through allying of additional study clinical signs and gross lesions including; respiratory signs, congested a head, greenish diarrhea, septicemia, fibrinous pericarditis, perihepatitis and airsacculitis, hemorrhages on the cecal tonsils and caseated plugs in tracheal bifurcation. mixed IBDV viral and /or bacterial infections are common and comparable findings have been reported previously [33, 36].

Nevertheless, all the surveyed chicken flocks were vaccinated, this study recorded mortality rates ranged from 0.31-25%, consistent with which was another previous study, carried out in Egypt, where the mortality were from 2-20% [33]. On the other hand, Omer & Khalafalla and Al-khalefa al. etdocumented higher mortality rates with percentages of 76% and 40%. respectively [20, 37]. This could be attributed to the differences in the vaccination programs and presence or absence of concurrent infections.

In this study, the real-time RT-PCR results confirmed the presence of IBDV in 47/62 (75.8%) chicken flocks and none of the apparently healthy flocks revealed IBDV. This result revealed that not all clinically diagnosed IBD flocks positive. Interestingly, all these positive flocks were vaccinated against IBDV. indicating **IBDV** outbreaks in the previously vaccinated flocks, as 30, 38, 39]. Differently, documented [18, prevalence higher **IBDV** rates documented in vaccinated chickens in Egypt (17/20; 85%) [20] and Khartoum State, Sudan;100% Meanwhile, [37]. lower percentages of IBDV infection

were previously recorded in several studies; 24.07% [40], 30% [41], 56.25 % [42] and 57.1% [33].

Notably, there are various risk factors, including flock density, season, age, breed housing system, region of investigation, and vaccination regimens, associated with the occurrence of IBD in chickens. In the present study, the high stocking density increased the detection of IBDV recorded before [33]. The common ages of the studied IBD flocks in most of the previous researches were ranged from 3-6 weeks [43, 44]. Likewise, our results exhibited that 91.7% (11/12) of chicken flocks were investigated flocks aged >35 days. Similar reports have been described previously [45, 46], where these authors reported that the susceptibility of chickens to IBDV is influenced by their ages, reaching its peak at 4 weeks of age. Additionally, this is also consistent with an earlier study carried out in Khartoum State, Sudan, demonstrating that 70% of IBD outbreaks occurred in vaccinated chickens at the age of 6 and 8 weeks [37]. Remarkably, in this study, IBDV was identified in 100% (6/6) of the IBDV-suspected chickens aged 18-20 days. This result was close to those listed earlier in another previous study conducted in Egypt where IBDV infection was detected in 60.7% (17/28) of the affected birds below 3 weeks of age [33].

The occurrence of IBD was higher broiler chickens between commercial such as Sasso, Indian River, and Hubbard chickens (100%) than in local chicken breeds, indicating that the local chicken breeds were more resistant to the infection [47, 48]. Accordingly, it is noteworthy that 3 out of the 7 apparently healthy flocks presented in this study were balady flocks. In addition, seasonal variation affects the incidence of IBD where, in the current study, the IBD prevalence rates were higher among chickens collected during the winter (19/21; 90.5%) spring (17/21; 80.9%) seasons, and this is not similar to previous studies reported that the incidence increased in the summer season[33, 35, 47]. This can be attributed to the fact that the majority of the investigated flocks in this study were collected during the winter and spring seasons. According to the rearing system, there significant was no difference in incidence of IBD between opened (75.8%)and closed systems (75.9%). This is not similar to previous studies, which reported that the IBD incidence increased in chickens housed in opened system due to frequent exposure to immunosuppressive factors such as heat stress, deprivation of water, and poor nutrition which resulted in suppression of the chicken immune system [49, 50].

Notably, there are many vaccination programs for preventing IBDV infection in chickens that differ in vaccine (s) type, vaccination route of vaccine age. administration, vaccine frequency, vaccine handling and transportation, and interference with MDA. The half-life of their homogeneity MDA and heterogeneity is essential to deciding the optimal time of vaccination [51]. The currently used vaccines in many countries, including Egypt, are imported and might not be antigenically similar to currently circulated field strains: accordingly, IBD outbreaks still occur in the vaccinated flocks [39, 52]. In the present investigation, it was noted that the incidence of IBDV was noted in diseased flocks applied different vaccination programs with an incidence rate of 100% chicken flocks that used intermediate vaccine (Nobilis Gumboro D78) only, Intermediate+ Intermediate Vaxxitek-ND-IBD, plus, and InnovaxND-IBD. This result indicates vaccination failure that may be attributed to various causes, as the high MDA at the time of IBDV vaccination might interfere with the vaccine response [53, 54], improper timing, vaccination faulty vaccine mishandling application, of vaccines especially recombinant ones, and vaccine strains that might not be antigenically similar the currently circulating Egyptian field strains [39, 52]. These results highlight the urgent need partial or complete sequencing of both vaccine and currently circulating virus genomes. Additionally, the antigenic matching between the vaccine(s) epidemic circulating strains is correspondingly very critical.

Interestingly, from the current results, the most effective vaccine program was in farms that used the Vaxxitek-ND-IBD + Intermediate vaccine, which gave good protection. The lower mortality rates were recorded in chicken flocks vaccinated and succeeded to prevent IBDV infection. This can be attributed to the NDV F gene insertion site is the same as the IBD VP2 gene, and the use of a single promotor allows reliable antigen expression. The turkey herpes double virus construct vaccine (HVT-ND-IBD) was tested in the field in birds with MDA. Efficacy against Marek's disease, Newcastle disease, IBD was evaluated after both in-ovo vaccination in broilers and subcutaneous vaccination in commercial layer birds and it was confirmed that HVT-ND-IBD was able to provide protection against all these diseases [55]. Interestingly, the efficacy of recombinant IBDV vaccines boostered with one or two booster dose (s) of live vaccines is lacking and needs several investigations.

Conclusion

Regardless vaccination of different programs, IBDV still circulates among chickens in Sharkia, Port Said, and Ismailia governorates, Egypt. The current vaccines applied in one inadequate protection provide against **IBDV** Meanwhile, vaccination strains. with a recombinant vaccine followed by one or two booster dose (s) of live protection vaccines, giving good preventing IBDV infection in apparently healthy flocks. Therefore, the currently strategies applied **IBDV** vaccination should be revised and improved as well as comprehensive genotyping identification for both VP1 and VP2 to detect any virus evolution.

Conflict of Interest

There is no conflict of interest to declare.

Acknowledgement

The authors are thankful to Dr. Tamer Mahmoud Abdul Latif, Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, for his help in the statistical analysis.

References

- [1] Becht, H. and Müller, H. (1991): Infectious bursal disease--B cell dependent immunodeficiency syndrome in chickens. Behring Inst Mitt,89: 217-225.
- [2] Balamurugan, V. and Kataria, J. M. (2006): Economically important non-oncogenic immunosuppressive viral diseases of chicken-current status. Vet Res Commun, 30(5): 541-566.
- [3] Saif, Y. M. (1991): Immunosuppression induced by infectious bursal disease virus. Vet Immunol. Immunopathol, 30: 45-50.
- [4] Orakpoghenor, O.; Oladele, S. B. and Abdu, P. A. (2020): Research Note: detection of infectious bursal disease

- virus antibodies in free-living wild birds in Zaria, Nigeria. Poult Sci, 99: 1975-1977.
- [5] El-Yuguda, A. D. and Baba, S. S. (2002):
 Prevalence of selected viral infections in various age groups of village chickens in Borno state,
 Nigeria. Niger J Anim Prod, 29: 245-250.
- [6] Wei, Y.; Li, J.; Zheng, J.; Xu, H.; Li, L. and Yu, L. (2006): Genetic reassortment of infectious bursal disease virus in nature. Biochem Biophys Res Commun, 350: 277-287.
- [7] Tadesse, B. and Jenbere, S. (2014): Seroprevalence of infectious bursal disease in backyard chickens at selected woredas of Eastern Ethiopia. J Biol Agric and Health, 4:70-75.
- [8] Delmas, B.; Attoui, H.; Ghosh, S.; Malik, Y. S.; Mundt, E. and Vakharia, V. N. (2019): ICTV virus taxonomy profile: Birnaviridae. J Gen Virol, 100: 5-6.
- [9] Brandt, M.; Yao, K.; Liu, M.; Heckert, R. A. and Vakharia, V. N. (2001): Molecular determinants of virulence, cell tropism, and pathogenic phenotype of infectious bursal disease virus. J Virol, 75:11974-11982.
- [10] Boot, H. J.; Hoekman, A. J. W. and Gielkens, A. L. J. (2005): The enhanced virulence of very virulent infectious bursal disease virus is partly determined by its B-segment. Arch Virol, 150: 137-144.
- [11] Cosgrove, A. S. (1962): An apparently new disease of chickens: avian nephrosis. Avian Dis, 6: 385-389.
- [12] Jackwood, D. J.; Saif, Y. M. and Moorhead, P. D. (1985): Immunogenicity and antigenicity of infectious bursal disease virus serotypes I and II in chickens. Avian Dis, 29:1184-1194.
- [13] Rosenberger, J. K. and Cloud, S. S. (1986): Isolation and characterization of

- variant infectious bursal disease viruses. J Am Vet Med Assoc, 189: 357.
- [14] Jackwood, D. J. and Sommer, S. E. (2002): Identification of infectious bursal disease virus quasispecies in commercial vaccines and field isolates of this doublestranded RNA virus. Virol, 304: 105-113.
- [15] El-Sergany, M. A.; Moursi, A.; Saber, M. S. and Mohamed, M. A. (1974): A preliminary investigation on the occurrence of Gumboro disease in Egypt [chickens]. Egypt J Vet Sci, 11:7-12.
- [16] Hassan, M. K. (2004): Very virulent infectious bursal disease virus in Egypt: epidemiology, isolation and immunogenicity of classic vaccine. Vet Res Commun, 28: 347-356.
- [17] Mohamed, M. A.; Elzanaty, K. E.; Bakhit, B. M. and Safwat, M. M. (2014): Genetic characterization of infectious bursal disease viruses associated with Gumboro outbreaks in commercial broilers from Asyut Province, Egypt. ISRN Vet Sci, 2014:916412.
- [18] Mawgod, S. A.; Arafa, A. S. and Hussein, H. A. (2014): Molecular genotyping of the infectious bursal disease virus (IBDV) isolated from broiler flocks in Egypt. Int J Vet Sci Med, 2: 46-52.
- [19] Sedeik, M. E.; Awad, A. M.; Rashed, H. and Elfeil, W. K. (2018): Variation in pathogenicity and molecular characterization of infectious bursal disease virus (IBDV) in Egypt. Am J Anim Vet Sci, 13: 76-86.
- [20] Alkhalefa, N.; El-Abasy, M.; Kasem, S. and Abu El-Naga, E. (2019): Molecular characterization of infectious bursal disease virus (IBDV) isolated from commercial broiler chickens in Nile Delta, Egypt. Bulg J Vet Med, 22: 399-408.
- [21] Müller, H.; Islam, M. R. and Raue, R. (2003): Research on infectious bursal

- disease—the past, the present and the future. Vet Microbiol, 97: 153-165.
- [22] Bublot, M.; Pritchard, N.; Le Gros, F. X. and Goutebroze, S. (2007): Use of a vectored vaccine against infectious bursal disease of chickens in the face of high-titred maternally derived antibody. J Comp Pathol, 137: S81-S84.
- [23] Prandini, F.; Simon, B.; Jung, A.; Pöppel, M.; Lemiere, S. and Rautenschlein, S. (2016): Comparison of infectious bursal disease live vaccines and a HVT-IBD vector vaccine and their effects on the immune system of commercial layer pullets. Avian Pathol, 45: 114-125.
- [24] Jackwood, D. J.; Sreedevi, B.; LeFever, L. J. and Sommer-Wagner, S. E. (2008): Studies on naturally occurring infectious bursal disease viruses suggest that a single amino acid substitution at position 253 in VP2 increases pathogenicity. Virol, 377: 110-116.
- [25] Jackwood, D. J. and Sommer-Wagner, S. E. (2011): Amino acids contributing to antigenic drift in the infectious bursal disease Birnavirus (IBDV). Virol, 409: 33-37.
- [26] Rautenschlein, S.; Kraemer, Ch.; Vanmarcke, J. and Montiel, E. (2005): Protective efficacy of intermediate and intermediate plus infectious bursal disease virus (IBDV) vaccines against very virulent IBDV in commercial broilers. Avian Dis, 49: 231-237.
- [27] Moody, A.; Sellers, S. and Bumstead, N. (2000): Measuring infectious bursal disease virus RNA in blood by multiplex real-time quantitative RT-PCR. J Virol Methods, 85:55-64.
- [28] Dobos, P.; Hill, B. J.; Hallett, R.; Kells, D. T.; Becht, H. and Teninges, D. (1979): Biophysical and biochemical characterization of five animal viruses with bisegmented double-stranded RNA genomes. J Virol, 32: 593-605.

- [29] Helal, A. M.; El-Mahdy, S. S. and Afify, M. A. (2012): Study the prevalence of variant IBD strains in some Egyptian chicken farms. N Y sci j, 5: 8-11.
- [30] Abou El-Fetouh, M. S. and Abdallah, F. M. (2018): Genetic characterization of Infectious Bursal Disease Viruses isolated from the vaccinated broiler chicken flocks in Egypt during 2015-2016. Pol J Vet Sci, 21: 581-588.
- [31] Rauw, F.; Lambrecht, B. and Van den Berg, T. (2007): Pivotal role of ChIFNγ in the pathogenesis and immunosuppression of infectious bursal disease. Avian Pathol, 36: 367-374.
- [32] Lukert, P. D. and Saif, Y. M. (2003): Infectious bursal disease. In: Calnek BW. editor. Diseases of Poultry. 11th edition. Ames (IA): Iowa State University Press 161–179 p.
- [33] El-Aried, T. A.; Mansour, S. M.G.; El Bakrey, R. M.; Ismail, A. E. S.N. and Eid, A. A.M. (2019): Infectious bursal disease virus: molecular epidemiologic perspectives and impact on vaccine efficacy against avian influenza and Newcastle disease viruses. Avian Dis. 63: 606-618.
- [34] Omar, S. E.; Sayed, W. A. E. M. E.; Abdelhalim, A. and Yehia, N. (2021): Genetic evolution of infectious bursal disease virus isolated from chicken poultry flocks in Egypt. J World's Poult Res, 11: 215-222.
- [35] Lian, J.; Wang, Z.; Xu, Z.; Pang, Y.; Leng, M.; Tang, S.; Zhang, X.; Qin, J.; Chen, F. and Lin, W. (2022): Pathogenicity and molecular characterization of infectious bursal disease virus in China. Poult Sci, 101: 101502.
- [36] Hasan, A.K.M.R.; Ali, M.H.; Siddique, M.P.; Rahman, M.M. and Islam, M.A. (2010): Clinical and laboratory diagnosis of Newcastle and Infectious bursal

- disease of chickens. Bangladesh j Vet Med, 8:131–140.
- [37] Omer, M. G. and Khalafalla, A. I. (2022): Epidemiology and laboratory diagnosis of very virulent infectious bursal disease virus in vaccinated chickens in Khartoum, Sudan. Open Vet J, 12:33-43.
- [38] Hagag, N.; Soliman, M. A.; Arafa, A.S.; Zanaty, A.; Erfan, A.M. and Hassan, M.K. (2015): Genetic characteristics of infectious bursal disease virus in Egypt from 2012 to 2014. Assiut Vet Med J, 61: 43-50.
- [39] Ndashe, K.; Simulundu, E.; Hang'ombe, B. M.; Moonga, L.; Ogawa, H.; Takada, A. and Mweene, A. S. (2016): Molecular characterization of infectious bursal disease viruses detected in vaccinated commercial broiler flocks in Lusaka, Zambia. Arch virol, 161: 513-519.
- [40] Pikuła, A.; Lisowska, A. and Domańska-Blicharz, K. (2023): Epidemiology of Infectious Bursal Disease Virus in Poland during 2016–2022. Viruses, 15: 289.
- [41] Muniz, E. C.; Verdi, R.; Jackwood, D. J.; Kuchpel, D.; Resende, M. S.; Mattos, J. C. Q. and Cookson, K. (2018): Molecular epidemiologic survey of infectious bursal disease viruses in broiler farms raised under different vaccination programs. J Appl Poult Res, 27:253–261.
- [42] Tolba, H. M. N.; Awad, N. F. S.; Kotb, G. K. F. and Adel, A. (2019): Molecular diagnosis of persistently very virulent infectious bursal disease virus at Sharkia Governorate, Egypt. Hosts and viruses, 6: 42-49.
- [43] Tsukamoto, K.; Tanimura, N.; Hihara, H.; Shirai, J.; Imai, K.; Nakamura, K. and Maeda, M. (1992): Isolation of virulent infectious bursal disease virus from field outbreaks with high mortality in Japan. J Vet Med Sci, 54: 153-155.

- [44] Mwenda, R.; Changula, K.; Hang'ombe, B. M.; Chidumayo, N.; Mangani, A. S.; Kaira, T.;Takada, A.;Mweene, A. S. and Simulundu, E. (2018):Characterization of field infectious bursal disease viruses in Zambia: evidence of co-circulation of multiple genotypes with predominance of very virulent strains. Avian Pathol, 47: 300-313.
- [45] Hirai, K.; Funakoshi, T.; Nakai, T. and Shimakura, S. (1981): Sequential changes in the number of surface immunoglobulin-bearing B lymphocytes in infectious bursal disease virus-infected chickens. Avian Dis, 25: 484-496.
- [46] Dahshan, A. H. M. and Hussien, A. S. (2011): The prevalence of subclinical infectious bursal disease in commercial broiler flocks. Assiut Vet Med J, 57: 1-12.
- [47] Choudhary, U. K.; Tiwary, B. K.; Prasad, A. and Ganguly, S. (2012): Study on incidence of infectious bursal disease in and around Ranchi. Indian J Anim Res, 46: 156 159.
- [48] Jenbreie, S.; Ayelet, G.; Gelaye, E.; Kebede, F.; Lynch, S. E. and Negussie, H. (2012): Infectious bursal disease: seroprevalence and associated risk factors in major poultry rearing areas of Ethiopia. Trop Anim Health Prod, 45: 75-79.
- [49] Hassan, B. A.; Prokopenko, S. N.; Breuer, S.; Zhang, B.; Paululat, A. and Bellen, H. J. (1998): skittles, a Drosophila phosphatidylinositol 4-phosphate 5-kinase, is required for cell viability, germline development and bristle morphology, but not for neurotransmitter release. Genet, 150: 1527-1537.
- [50] Abdeta, D.; Tamiru, Y.; Amante, M.; Abebe, D.; Kenei, F.; Shiferaw, J. and Tefera, M. (2022): Seroprevalence and associated risk factors of infectious bursal disease in chickens managed

- under intensive and backyard production systems in western Oromia, Ethiopia. Vet Med, 13: 39-46.
- [51] Block, H.; Meyer-Block, K.; Rebeski, D. E.; Scharr, H.; de Wit, S.; Rohn, K. and Rautenschlein, S. (2007): A field study on the significance of vaccination against infectious bursal disease virus (IBDV) at the optimal time point in broiler flocks with maternally derived IBDV antibodies. Avian Pathol, 36: 401-409.
- [52] Kasanga, C. J.; Yamaguchi, T.; Wambura, P. N.; Maeda-Machang'u, A. D.; Ohya, K. and Fukushi, H. (2007): Molecular characterization of infectious bursal disease virus (IBDV): diversity of very virulent IBDV in Tanzania. Arch Virol, 152: 783-790.
- [53] Hair-Bejo, M.; Ng, M. K. and Ng, H. Y. (2004): Day old vaccination against

- infectious bursal disease in broiler chickens. Int J Poult Sci, 3: 124-128.
- [54] Moraes, H. L. S.; Salle, C. T. P.; Nascimento, V. P.; Salle, F. O.; Rocha, A. C. G. P.; Souza, G. F.; Furian, T. Q. and Artencio, J. O. (2005): Infectious bursal disease: evaluation of maternal immunity and protection by vaccination of one-day old chicks against challenge with a very virulent virus isolate. Braz J Poult Sci, 7: 51-57.
- [55] van Hulten, M. C.; Cruz-Coy, J.; Gergen, L.; Pouwels, H.; Ten Dam, B.; Verstegen, I.; Groof, A.; Morsey, M. and Tarpey, I. (2021): Efficacy of a turkey herpesvirus double construct vaccine (HVT-ND-IBD) against challenge with different strains of Newcastle disease, infectious bursal disease and Marek's disease viruses. Avian Pathol., 50:18-30.

الملخص العربي

التواجد الوبائي لفيروس مرض التهاب جراب فابريشيا المعدي في قطعان الدجاج المحصنة ببرامج مختلفة

نجلاء فتحي سعيد عوض* وهبة حسن محمد مرسي و أحمد الباقر و امال أنيس مهدي عيد* قسم طب الطيور والأرانب، كلية الطب البيطري، جامعة الزقازيق، الزقازيق، الشرقية 44511، مصر. مرض إلتهاب جراب فابريشياالمعدي (IBD) هو مرض مثبط حاد للمناعة يصيب الدجاج ولا يزال يسبب خسائر

إقتصادية فادحة لصناعة الدواجن على الرغم من تطبيق برامج تحصين مختلفة. و تهدف الدراسة الحالية إلى تقصى مدى إنتشار عدوى فيروس مرض التهاب جراب فأبريشيا المعدى فيما يتعلق ببرامج التحصين المختلفة وعوامل الخطر الأخرى في ثُلاث محافظات مُختافة بمصر. لذلك تم فحص عدد 69 من قطعان الدجاج؛ 62 منهم يشتبه في إصابتها طبيعيًا بفيروس مرض التهاب جراب فابريشيا المعدى (IBDV) و7 قطعان تبدو سليمة و تم التشخيص إكلينيكيا وبإستخدام تفاعلالبلمرةالمتسلسل للنسخ العكسي الكمي-(real time RT-PCR) وتضمنت الأعراض الإكلينيكية الإسهال الأبيض، والخمول، والريش غير منتظم، والصُّفة التشريكية التي أظهرت تغيرات باثولوجية في الكيس الفبراشي وإلتهاب الكليتين، والنزيف في العضلات، والنزيف النقطي عند التقاطع بين المعدةالغدية والقانصة. وكانت معدلات االنفوق تتراوح من 0.31 إلى 25٪. وبإستخدام البلمرة المتسلسل للنسخ العكسى الكمي تم التعرف على فيروس IBDV في 47 من أصل 62 (75.8٪) من القطعان المتوقع اصابتها ولم يتم اكتشاف أي فيروس IBDV في القطعان السليمة ظاهريا. كماتم تسجيل معدلات انتشار عالية في الدجاج بعمر 18-20 يومًا ومن سلالات ساسو وإنديان ريفر وهوبارد. أظهرت قطعان الدجاج المحصنة باللقاح المتوسط الحي(Nobilis Gumboro D78) فقط، واللقاح المتوسط + المتوسط بلس، وVaxxitek-ND-IBD، وInnovax-ND-IBD معدل اكتشاف بنسبة 100%. ومن اللاَّفت للنظر أن برنامج اللقاح الأكثر فعالية كان في القطعان التي استخدمت اللقاح الوسيط +Vaxxitek-ND -IBD (33.3%). يمكن أن نستنتج أن لقاحات IBDV الحالية المطبقة بجرعة واحدة توفر حماية غير كافية ضد سلالات فيروس مرض التهاب جراب فابريشيا المعديIBDV خاصة في السلالات الحية بسبب تداخل الأجسام المضادة الأمومية. وفي الوقت نفسه، فإن التطعيم باللقاح المؤتلف متبوعًا بجرعة أو جرعات معززة من اللقاحات الحية يوفر حماية جيدة ويمنع عدوي IBDV. ولذلك، فمن الضروري الاستفادة من نتائج أفضل تجارب التطبيق الحقلي لتحديث وتحسين برامج التحصين ضد فيروس مرض التهاب جراب فابريشيا المعدي IBDV مع الأخذ في الاعتبار ممارسات الأمن الحيوي في مزارع الدجاج مع دارسة متعمة للتعرف على التتابع الجيني الكامل للفيروس لتحديد العترات المتحوة والجديدة.